Pokazywanie postów oznaczonych etykietą mitochondria. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą mitochondria. Pokaż wszystkie posty

wtorek, 8 listopada 2016

Mutacje w mitochondrialnym DNA powiązane z autyzmem


Badacze z Cornell University w Ithaca odkryli u dzieci z rozpoznaniem zaburzeń ze spektrum autyzmu większą, niż u zdrowych członków ich rodzin, ilość szkodliwych mutacji w DNA mitochondrialnym.
O zaburzeniach funkcjonowania mitochondriów, jako jednej z możliwych przyczyn pojawiania się objawów autyzmu, pisałem już wielokrotnie. Na blogu znajduje się 16 wcześniejszych wpisów z etykietą „mitochondria”.
Nie do końca jasne są biologiczne mechanizmy tego związku. W obecnym badaniu analizowano mitochondrialny DNA (mtDNA) u 903 dzieci z ASD oraz ich zdrowego rodzeństwa i matek. Obserwowano unikalny wzór mutacji, gdzie w pojedynczej komórce występują zarówno zmutowane, jak i prawidłowe sekwencje mtDNA (heteroplazmia). Dzieci z autyzmem miały 2,2 razy więcej potencjalnie patogennych mutacji w porównaniu do rodzeństwa i 1,5 raza więcej mutacji niesynonimicznych (punktowych, zmieniających kodowany aminokwas). Mutacje mogą być dziedziczone po matce lub powstawać spontanicznie w trakcie indywidualnego rozwoju. Naukowcy zauważyli, że ryzyko związane z tymi mutacjami jest najbardziej widoczne u dzieci z niższym IQ i uboższym repertuarem zachowań społecznych, w porównaniu do zdrowego rodzeństwa. Szkodliwe mutacje występujące w mitochondrialnym DNA wiążą się ze zwiększonym ryzykiem wystąpienia problemów neurologicznych i rozwojowych, w tym zaburzeń ze spektrum autyzmu.
Mitochondria odgrywają kluczową rolę w metabolizmie, więc wyniki tego badania mogą pomóc wyjaśnić zaburzenia metaboliczne wiązane z ASD i innymi zaburzeniami neurorozwojowymi. Badanie mutacji w mtDNA rodzin wysokiego ryzyka może przyczynić się do poprawy diagnostyki i leczenia tych chorób.

Źródła:
„Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder”
PLOS Genetics, 28 października 2016 r.
tutaj
EurekAlert!, 28 października 2016 r.
tutaj

czwartek, 22 maja 2014

Deficyty w funkcjonowaniu mitochondriów u dzieci z autyzmem – nowe badania

Granulocyty (rodzaj komórek układu odpornościowego) u dzieci z autyzmem wykazują jedną trzecią zdolności do zwalczania infekcji i ochrony organizmu, w porównaniu do dzieci, które rozwijają się prawidłowo. Ich reakcja jest zarówno mniejsza, jak i wolniejsza. Komórki te walczą z bakteriami i wirusami poprzez produkcję wysoko reaktywnych form tlenu, toksycznych substancji chemicznych zabijających drobnoustroje.
Większość granulocytów u dzieci z autyzmem wykazywała wady w fosforylacji oksydacyjnej (seria procesów związana z przekształcaniem energii w formy przydatne metabolicznie), odpowiedzi immunologicznej i obronie antyoksydacyjnej.
Mitochondria to główne źródła wolnych rodników, które są bardzo reaktywne i mogą uszkadzać struktury komórkowe i DNA. Organizm zwykle radzi sobie z typowymi uszkodzeniami, jednak u dzieci z autyzmem produkowana była większa ilość wolnych rodników i za tym szła mniejsza zdolność naprawiania wyrządzonych szkód. W związku z tym komórki doświadczały bardziej nasilonego stresu oksydacyjnego (brak równowagi między działaniem reaktywnych form tlenu a zdolnością do szybkiej detoksykacji, naprawy szkód). Poziom wolnych rodników w komórkach krwi u dzieci z autyzmem był 1,5 razy wyższy, niż u dzieci zdrowych.
Badanie to, prowadzone przez naukowców z University of California w Davis obejmowało 10 dzieci z głęboką formą autyzmu.

Źródła:
Deficits in Bioenergetics and Impaired Immune Response in Granulocytes From Children With Autism”
Pediatrics, vol. 133 (5), 01 maja 2014 r.
ScienceDaily, 08 maja 2014 r.

czwartek, 13 lutego 2014

Zaburzenia mitochondrialne związane z autyzmem

Na stronie MitoAction Alyssa Davi prezentuje przegląd badań prowadzonych w laboratorium dra Richarda Frye`a w Arkansas Children’s Hospital Research Institute.

Dzieci z ASD i zaburzeniem funkcjonowania mitochondriów prezentują regres rozwojowy, opóźnienie umiejętności motorycznych, męczliwość, zaburzenia żołądkowo-jelitowe i ataksję. Istnieje coraz więcej danych dokumentujących zaburzenia metaboliczne u dzieci z autyzmem. Dysfunkcje mitochondriów i zaburzenie funkcjonowania mitochondriów (przypuszczalnie o wiele rzadziej) oraz braki kwasu foliowego, na które mózg jest wrażliwy, wydają się być obecnie najbardziej powszechnymi zaburzeniami metabolicznymi występującymi u dzieci z ASD.
Mitochondria mogą modyfikować swoją funkcję w zależności od środowiska wewnątrzkomórkowego i zewnątrzkomórkowego. Specyficzne warunki mogą hamować ich funkcjonowanie u niektórych dzieci z autyzmem. Zmiana tego środowiska może teoretycznie przywrócić zaburzone funkcje mitochondrialne. Ponadto mitochondria są zdolne do naprawy i regeneracji. W przypadku braku defektów genetycznych prawdopodobnie prawidłowe działanie mitochondriów może być przywrócone przez te mechanizmy naprawcze. L-karnityna, koenzym Q, witaminy z grupy B , witamina C i witamina E, jak również przeciwutleniacze, mogą wspierać funkcjonowanie mitochondriów. Zmiany w funkcjonowaniu mitochondriów w grupie dzieci z ASD są powodowane kombinacją czynników genetycznych i środowiskowych. Nabyte zaburzenia czynności mitochondriów mogą wynikać z ekspozycji na metale ciężkie, spaliny, polichlorowane bifenyle (PCB) i pestycydy. Mitochondria mogą być uszkodzone przez endogenne czynniki wiązane z autyzmem takie jak: podwyższony poziom cytokin prozapalnych wynikający z uaktywnionego układu odpornościowego lub inne stany związane ze stresem oksydacyjnym.
W artykule jest mnóstwo odnośników do omawianych w artykule oraz innych badań, m. in. dotyczących leczenia dysfunkcji mitochondriów związanych z autyzmem, chorób i zaburzeń metabolicznych związanych z ASD oraz zaburzeniami rozwoju układu nerwowego. Ponadto jest wymieniony, w formie listy, szereg zaburzeń mitochondrialnych oraz metabolicznych występujących u osób z autyzmem.

Źródła:
„January 2014 Teleconference”
MitoAction, 14 stycznia 2014 r.
Publications by Dr. Rossignol & Colleagues

czwartek, 19 września 2013

Alergia, mastocyty, zmiany w mózgu i autyzm

Theoharis C. Theoharides (Tufts University School of Medicine, Boston) sprawdzał, poprzez analizę publikacji naukowych, czy dane kliniczne sugerują związek pomiędzy objawami atopowymi i ASD. Poza tym czy może to prowadzić do zaburzeń w mózgu wyjaśniających patogenezę autyzmu.

Aktywacja komórek tucznych (mastocytów) w mózgu przez czynniki alergiczne, środowiskowe, toksyczne, immunologiczne, neurohormonalne oraz związane ze stresem może prowadzić do alergii ogniskowych zlokalizowanych w CUN. Sytuacja taka jest bardziej prawdopodobna w podgrupie pacjentów z ASD z podatnymi genami, które mają związek z aktywacją komórek tucznych.

Komórki tuczne – składniki układu immunologicznego, wywołujące głównie lokalny stan zapalny (np. alergię) w reakcji na obce substancje.

Mastocyty w mózgu, aktywowane przez w/w czynniki wydzielają duże ilości substancji, które mogą powodować alergię w kluczowych jego rejonach. Może ona nawet przekształcić się w lokalny stan zapalny.
Pomocne w diagnozowaniu tego stanu rzeczy i następnie zapobieganiu aktywacji komórek tucznych może być badanie osocza/płynu mózgowo-rdzeniowego (CSF) lub/i poziomu adenozynotrójfosforanu (ATP), który jest wytwarzany w macierzy mitochondrialnej. Stwierdzono, że w surowicy dzieci z autyzmem wzrasta poziom mitochondrialnego DNA, jak i ATP. Powoduje to silną odpowiedź przeciwzapalną.
Niestety, nie ma leków , które mogłyby blokować wydzielanie komórek tucznych. Kromoglikan dwusodowy działał skutecznie u szczurów, lecz nie było podobnych efektów, jeśli chodzi o komórki ludzkie. Być może luteolina (przeciwutleniacz, występujący gównie w selerze, zielonej papryce, marchwi), która hamuje aktywację mikrogleju (i jest lepiej tolerowana, niż niesteroidowe leki przeciwzapalne) może być alternatywą.
O rtęci jako jednym z toksycznych czynników środowiskowych, który powoduje aktywację mastocytów i bardziej szczegółowo o samym procesie aktywacji (degranulacji) pisałem we wrześniu 2010 r.

Dziękuję Pani dr Magdalenie Cubale-Kucharskiej za informację o badaniach i inspirację do tego wpisu.

Źródło:
Clinical Therapeutics, vol. 35 (5), maj 2013

środa, 21 sierpnia 2013

Nadwrażliwość na thimerosal u osób z autyzmem i ich rodzeństwa

Autyzm i szczepionki – o tym jaki to kontrowersyjny temat i jak zażarte dyskusje powoduje od kilku lat nie trzeba na tym blogu przypominać.
W The Methodist Neurological Institute (Houston), sprawdzano wpływ thimerosalu na proliferację komórek i mitochondriów z limfocytów B pobranych od osób z autyzmem, ich bliźniaczego rodzeństwa bez autyzmu i ich rodzeństwa nie bliźniaczego u 11 rodzin.
Subpopulacja składająca się z ośmiu osób (4 z ASD, 2 bliźniąt i 2 rodzeństwa) z czterech rodzin wykazała nadwrażliwość na thimerosal, natomiast nikt z grupy kontrolnej nie prezentował takiej nadwrażliwości. Co więcej, okazało się, że grupa z nadwrażliwością przejawia słabszą obronę antyoksydacyjną, podwyższony poziom markerów stresu oksydacyjnego i wysoki poziom mleczanów.
Choć zostało ustalone, że 1/3 badanych z ASD ma podwyższony poziom wrażliwości na thimerosal, i ta wrażliwość jest podzielana przez jedną trzecią ich rodzeństwa/bliźniąt, badanie jednak nie odnosi się do etiologii. Być może niektóre osoby z łagodnym defektem mitochondrialnym mogą być bardzo podatne na niektóre toksyny, np. takie jak thimerosal.
Pisałem w marcu 2011 r., że częścią nowej, pięcioletniej strategii badań nad bezpieczeństwem szczepionek będzie sprawdzenie czy autyzm może być klinicznym efektem szczepień. Informowała o tym amerykańska agencja Centers for Disease Control and Prevention. Planuje się też badania zaburzeń czynności mitochondriów jako potencjalnego ryzyka mogącego wystąpić po szczepieniu. National Vaccine Advisory Committee (NVAC) - U.S. Department of Health and Human Services podkreśla, że wystąpienie w jednym czasie regresu w rozwoju i szczepienia nie stanowi dowodu na związek przyczynowo-skutkowy, jednakże zjawisko autyzmu regresywnego uzasadnia dalsze badania w ściśle określonych podgrupach osób z zaburzeniami ze spektrum autyzmu.


Źródło:
Journal of Toxicology, vol. 2013

tutaj

wtorek, 26 marca 2013

Sapropteryna i leczenie dzieci z autyzmem – efekty metaboliczne

Sapropteryna to syntetyczna forma występującej naturalnie w organizmie tetrahydrobiopteryny (BH4). Zgłaszane są przypadki złagodzenia objawów u dzieci z zaburzeniami ze spektrum autyzmu.
BH4 bierze udział w złożonym szlaku metabolicznym, który może nie funkcjonować prawidłowo u osób z autyzmem. Liczne badania wykazały, że dzieci z autyzmem mają podwyższony poziom tlenku azotu w porównaniu do grupy kontrolnej. Mechanizm terapeutycznego działania BH4 nie jest znany.
Badacze z USA postanowili sprawdzić, które mechanizmy są związane z poprawą objawów w czasie leczenia sapropteryną. W eksperymencie brało udział dziesięcioro dzieci w wieku 2-6 lat, chłopców w zdecydowanej większości, z zaburzeniami ze spektrum autyzmu, z opóźnieniem rozwoju umiejętności społecznych i/lub rozwoju mowy oraz odpowiednim poziomem BH4. Otrzymywały one codziennie rano, przez 16 tygodni dawkę sapropteryny (w postaci leku o nazwie Kuvan). U ośmiorga nie zanotowano żadnych skutków niepożądanych.
Zaobserwowano poprawę umiejętności językowych, oraz zmiany w zachowaniu. Ponadto nastąpiły znaczące zmiany, jeśli chodzi o biomarkery procesów związanych z
obserwowanymi szlakami metabolicznymi. Dane sugerują, że behawioralna poprawa w wyniku podawania sapropteryny związana jest z poprawą metabolizmu tlenku azotu. Jednakże u pacjentów z większą jego dysfunkcją potrzebne są większe dawki i dłuższy czas leczenia. Tlenek azotu bierze udział w wielu mechanizmach fizjologicznych, m. in. w procesach neurotransmisji, immunologicznych oraz związanych z funkcjonowaniem mitochondriów.
W opisywanym badaniu brała udział stosunkowo mała liczba uczestników, brakowało też grupy kontrolnej (placebo). Dlatego autorzy określili je jako badanie wstępne. Potrzebne są dalsze, bardziej zaawansowane eksperymenty.

Źródło:
Translational Psychiatry, vol. 3, 5 marca 2013 r.

poniedziałek, 13 czerwca 2011

Badanie stanu odżywienia oraz metabolizmu dzieci z autyzmem

W ubiegłym tygodniu opublikowano wyniki badań prowadzonych w Arizona State University. Porównywano w nich 55 dzieci z zaburzeniami ze spektrum autyzmu z grupą 44 dzieci zdrowych, w podobnym wieku i podobnej płci. Wiele z tych ustaleń potwierdza wcześniejsze doniesienia. Poniżej przedstawiam najciekawsze wnioski.
Niski poziom ATP (adenozynotrifosforanu - związku odgrywającego istotną rolę w wewnątrzkomórkowym transporcie energii) sugeruje, że u dzieci z autyzmem występują zaburzenia funkcji mitochondriów (co powoduje zmniejszenie produkcji energii). O związkach mitochondriów z autyzmem pisałem już wiele razy i wszystkie poprzednie posty można znaleźć klikając etykietę „mitochondria” pod tym wpisem.
Niższy poziom biotyny (witaminy H) i innych witamin oraz biomarkery wskazujące na zwiększone zapotrzebowanie na witaminy, wyraźnie sugerują, że u pewnej części dzieci z autyzmem może być pomocna suplementacja.
Zaobserwowano niski poziom zredukowanego glutationu i wzrost poziomu utlenionego glutationu. Glutation jest głównym przeciwutleniaczem oraz istotnym elementem systemu obrony przed metalami toksycznymi i chemikaliami. Niski poziom NADPH (dinukleotyd nikotynoamidoadeninowy) przynajmniej częściowo wyjaśnia zwiększoną oksydację glutationu. NADPH jest czynnikiem niezbędnym do przetwarzania utlenionego glutationu do glutationu zredukowanego. O glutationie również pisałem kilka razy, jak również o wpływie zaburzeń czynności mitochondriów na obniżenie jego poziomu. Patrz: etykieta „glutation”.
Wykazano niski poziom SAM (S-adenozylometioniny), która jest głównym dostarczycielem metylu w organizmie i najważniejszym substratem w procesach metylacji (aktywacji, dezaktywacji, modyfikacji) DNA, RNA, białek, fosfolipidów i neuroprzekaźników. Urydyna, biomarker stanu metylacji, była także znacznie podwyższona, co świadczy o znacznym upośledzeniu metylacji.
ATP jest czynnikiem niezbędnym do przemiany metioniny w SAM, więc niski poziom ATP prawdopodobnie przyczynia się do mniejszego poziomu SAM.
Niski poziom tryptofanu (aminokwasu), sugeruje, że dzieci z autyzmem mają również niski poziom serotoniny (neuroprzekaźnika) oraz melatoniny (hormonu), ponieważ tryptofan jest przekształcany w serotoninę, a następnie melatoninę. Tutaj pisałem o polskich badaniach poziom tryptofanu u dzieci.
Zaobserwowano również obniżony poziom litu, pierwiastka związanego z różnymi zaburzeniami psychicznymi (np. schizofrenią, zachowaniami agresywnymi).
Wszystkie powyższe wyniki uzasadniają prowadzenie suplemetacji u osób z autyzmem, Jednakże warto podkreślić, że ma ona z definicji indywidualny charakter i gdy ma być umiejętnie prowadzona powinna opierać się na indywidualnych badaniach.

Źródło:
Nutrition & Metabolism, 8 czerwca 2011 (.pdf)
tutaj

czwartek, 31 marca 2011

Nowa strategia badań – należy sprawdzić czy autyzm może być efektem szczepień

Częścią nowej, przyjętej właśnie, pięcioletniej strategii badań nad bezpieczeństwem szczepionek będzie sprawdzenie czy autyzm może być klinicznym efektem szczepień. Informuje o tym amerykańska agencja Centers for Disease Control and Prevention.
Planuje się też badania zaburzeń czynności mitochondriów jako potencjalnego ryzyka mogącego wystąpić po szczepieniu. Zespół ekspertów będzie rozważać autyzm jako jeden z możliwych efektów u dzieci szczepionych i nie szczepionych.
Plan CDC uwzględnia rekomendacje zatwierdzone przez National Vaccine Advisory Committee (NVAC) - U.S. Department of Health and Human Services.
Następuje to miesiąc po zasygnalizowaniu przez Autism Coordinating Committee (IACC) zmiany priorytetów badawczych w kierunku środowiskowych przyczyn autyzmu takich jak toksyny, czynniki biologiczne oraz „niekorzystne zdarzenia następujące po szczepieniu”.
IACC chce odejścia od badań genetycznych na rzecz badania interakcji między genami i czynnikami środowiskowymi.
NVAC podkreśla, że wystąpienie w jednym czasie regresu w rozwoju i szczepienia nie stanowi dowodu na związek przyczynowo-skutkowy, jednakże zjawisko autyzmu regresywnego uzasadnia dalsze badania w ściśle określonych podgrupach osób z zaburzeniami ze spektrum autyzmu. Ponadto zaleca się ocenę, czy efekty niepożądane po szczepieniu (np. gorączka, drgawki) korelują z ryzykiem autyzmu.
Przez lata tysiące rodziców w USA apelowało do rządu o badania efektów niepożądanych po szczepieniach, powodów osłabienia czynności mitochondriów oraz badań grup, które są bardziej podatne na uszkodzenia spowodowane zakażeniami, szczepionkami i chorobami autoimmunologicznymi.

Źródła:
Huffington Post, 18.03.2011 r.
tutaj
Centers for Disease Control and Prevention, luty 2011 (.pdf)
tutaj
National Vaccine Advisory Committee
“Recommendations on the Centers for Disease Control and Prevention Immunization Safety Office Draft 5-Year Scientific Agenda”, 02.02.2009 r. (.pdf)
tutaj
U.S. Department of Health and Human Services
“The 2011 Interagency Autism Coordinating Committee Strategic Plan for Autism Spectrum Disorder Research”, 18.01.2011 r.
tutaj

poniedziałek, 24 stycznia 2011

Thimerosal indukuje apoptozę

O wzmożonej apoptozie i jej powiązaniu z autyzmem pisałem w czerwcu. Dzisiaj proponuję wspólne (i krótkie) wnioski z przeglądu kilku badań łączących thimerosal oraz mitochondria z tym procesem.
Thimerosal, w nanomolowych stężeniach, indukuje śmierć komórek nerwowych poprzez szlaki mitochondrialne.
Apoptoza indukowana przez thimerosal jest związana z depolaryzacją błony mitochondriów, wytwarzaniem reaktywnych form tlenu (ROS) i uwalnianiem cytochromu c oraz czynnika indukującego apoptozę z mitochondriów do cytoplazmy. Podwyższony poziom wewnątrzkomórkowych reaktywnych form tlenu jest wystarczającym czynnikiem do uruchomienia apoptozy.

Apoptoza – naturalne zjawisko zaprogramowanej śmierci komórki mającej na celu dobro całego organizmu.
Cytochrom c i czynnik indukujący apoptozę (AIF) – białka biorące udział w procesie apoptozy.
Depolaryzacja – zmniejszenie potencjału błony komórkowej.


Thimerosal indukuje apoptozę w limfocytach T (odpowiedzialnych za odpowiedź odpornościową komórkową) poprzez szlaki mitochondrialne - indukcję stresu oksydacyjnego oraz zmniejszenie wydzielania glutationu (peptydu o właściwościach antyoksydacyjnych).
Ponadto komórki limfoblastyczne u osób z autyzmem wykazują zmniejszoną zdolność gromadzenia glutationu w cytoplazmie i mitochondriach. Może to zagrozić obronie antyoksydacyjnej i zdolności detoksykacji w warunkach prooksydacyjnych (produkcji ROS).
Wyniki różnych badań wskazują na szkodliwy wpływ thimerosalu na cytoarchitekturę i inicjowanie apoptozy za pośrednictwem mitochondriów.

Źródła:
Journal of the Federation of American Societies for Experimental Biology, sierpień 2009, vol. 23 (8)
tutaj
Postępy Higieny i Medycyny Doświadczalnej, 2006, vol. 60 (.pdf)
tutaj
PubMed, 2005
tutaj
NeuroToxicology, styczeń 2005, vol. 26 (3)
tutaj
Genes and Immunity, sierpień 2002, vol 3 (5)
tutaj

środa, 22 grudnia 2010

Zaburzenia czynności mitochondriów – nowe badania

Wielokrotnie już pisałem o roli stresu oksydacyjnego w powstawaniu autyzmu oraz o zaburzeniach czynności mitochondriów. Do tych postów można dotrzeć poprzez klikanie na etykiety wymienione pod tym wpisem.
Istnieje duże prawdopodobieństwo, że dzieci z autyzmem mają deficyt zdolności do produkcji energii komórkowej w porównaniu do dzieci zdrowych.
To jest wniosek z nowej, szeroko komentowanej analizy, przeprowadzonej przez badaczy z University of California - System Health Davis.
Skumulowane uszkodzenia i stres oksydacyjny w mitochondriach (miejscu produkcji energii komórkowej) może mieć wpływ na początek i nasilenie autyzmu.
Analizowano szlaki metaboliczne w mitochondriach limfocytów. Wcześniejsze badania mięśni (które mogą wytwarzać własną energię) nie mogły w pełni wykazać deficytów energetycznych.
Naukowcy odkryli, że mitochondria dzieci z autyzmem zużywają znacznie mniej tlenu niż te organelle u dzieci z grupy kontrolnej. Oznacza to obniżoną ich aktywność.
Mitochondria są głównym źródłem wewnątrzkomórkowych wolnych rodników, które (bardzo reaktywne) mogą uszkodzić struktury komórkowe, w tym DNA. Komórki są w stanie naprawić typowe uszkodzenia oksydacyjne. Jednak poziom nadtlenku wodoru (normalnego produktu ubocznego aktywności mitochondrialnej, z którym zdrowy organizm sobie radzi) u autystycznych dzieci był dwa razy wyższy niż u zdrowych dzieci. W rezultacie komórki nerwowe dzieci z autyzmem są narażone na wyższy poziom stresu oksydacyjnego.
Posiadają one ogromne zapotrzebowanie na energię, więc zaburzenia czynności mitochondriów mają istotny, negatywny wpływ na ich funkcjonowanie. Czy może to spowodować autyzm?
Różne nieprawidłowości obserwowane w mitochondriach dzieci z autyzmem dowodzą, że stres oksydacyjny w tych strukturach może mieć wpływ na powstawanie autyzmu. To może powodować skumulowane uszkodzenia.
Badano dziesięcioro dzieci autystycznych i dziesięcioro zdrowych w wieku 2 do 5 lat. Badanie nie odpowiada na pytanie czy problem powstaje w okresie prenatalnym czy po urodzeniu. Warto też byłoby sprawdzić funkcjonowanie mitochondriów w innych tkankach.
Wady mitochondrialne mogą być powodowane przez uszkodzone geny, poprzez wpływ środowiska lub przez kombinację tych dwóch czynników.
„Jeśli znajdziemy jakiś marker krwi, który jest unikalny dla dzieci z autyzmem, może uda nam się zmienić sposób diagnozowania tego trudnego do oceny stanu” – mówi Cecilia Giulivi, główna autorka badania.

Źródła:
News from UC Davis Health System, 30.11.2010
tutaj
Journal of the American Medical Association, 01.12.2010, vol.304, nr 21
tutaj

poniedziałek, 20 września 2010

Rtęć powoduje uwolnienie mediatorów zapalnych z komórek tucznych

Rtęć jest neurotoksyczna, natomiast jej wpływ na system odpornościowy jest mniej znany.
Komórki tuczne biorą udział w reakcji alergicznej, ale odgrywają również rolę w odporności wrodzonej i nabytej oraz w procesach zapalnych.

Komórki tuczne (mastocyty) są elementem układu odpornościowego. Odgrywają m. in. kluczową rolę w reakcjach alergicznych. Substancje wydzielane przez nie w dużych ilościach (degranulacja) wywołują objawy układowe.

Wielu pacjentów z autyzmem przejawia objawy uczuleniowe. Ponadto u pacjentów z mastocytozą i autyzmem występuje duża ilość aktywnych komórek tucznych w większości tkanek.
W związku z tym zbadano wpływ chlorku rtęci (HgCl2) na aktywację komórek tucznych u ludzi. HgCl 2 stymuluje uwalnianie VEGF i IL-6 przez komórki tuczne. Zjawisko to może zakłócać funkcjonowanie bariery krew-mózg i ułatwiać zapalenie mózgu.

VEGF to grupa białek związanych m. in. ze zwiększoną przepuszczalnością naczyniową.
IL-6 (interleukina) to jedna z najważniejszych cytokin biorących udział w procesach zapalnych.


Związki rtęci można znaleźć w różnych lekach, kremach wybielających, środkach odkażających i dezynfekujących, jako konserwant w produkcji kosmetyków i pasty do zębów, w soczewkach, szczepionkach, środkach antykoncepcyjnych, w rozwiązaniach w zakresie immunoterapii, fungicydach, herbicydach, wypełnieniach stomatologicznych, a także w rybach, takich jak np. tuńczyk (z powodu zanieczyszczenia wody).
Rola rtęci jako środka konserwującego w szczepionkach została szeroko omówiona, ale większość badań epidemiologicznych nie potwierdza związku przyczynowego między szczepionkami i autyzmem.
Komórki tuczne, ze względu na ich lokalizację w skórze, drogach oddechowych i w układzie pokarmowym są potencjalnym celem dla czynników środowiskowych o charakterze immunotoksycznym. Pacjenci z zaburzeniami ze spektrum autyzmu prezentują objawy alergii, które nie zawsze wydają się być związane z IgE. Godne uwagi jest to, że komórki tuczne mogą być stymulowane przez niealergiczne bodźce pochodzące z jelit lub mózgu, szczególnie neuropeptydy i neurotensyny.
Po aktywacji komórki tuczne wydzielają m. in. prozapalne cząsteczki, które mają znaczenie w biologii autyzmu. Np. VEGF, IL-6 mogą być uwalniane „wybiórczo”, bez degranulacji, co jest stymulowane przez chlorek rtęci. Rtęć może również zwiększyć komórkowy stres oksydacyjny, ponieważ neurony są bardzo podatne na reaktywne formy tlenu a mitochondria neuronalne są szczególnie narażone na uszkodzenia oksydacyjne.
Wyniki niniejszego badania pokazują jakie znaczenie może mieć rtęć w patogenezie autyzmu przyczyniając się do uwalniania VEGF i IL-6 z komórek tucznych. W rezultacie proces ten zakłóca funkcjonowanie bariery krew-mózg i ułatwia powstawanie stanów zapalnych w mózgu.
Zaburzenia ze spektrum autyzmu mogą wynikać z kombinacji genetycznej/biochemicznej podatności oraz epigenetycznego (pozagenowego) narażenia na czynniki środowiskowe. W tym szczególne znaczenie może mieć ograniczona zdolność do wydalania rtęci i/lub narażenie na rtęć w najważniejszych momentach rozwoju.

Źródło:
Journal of Neuroinflammation, 11.03.2010
tutaj

czwartek, 5 sierpnia 2010

Polichlorowane bifenyle i środki zmniejszające palność: toksyczne i obecne w środowisku

Wiele się mówi o powiązaniach neurotoksycznych polichlorowanych bifenyli (PCB) z autyzmem oraz ADHD. W moim poście z dn. 17.05.2010 pisałem o możliwym, negatywnym wpływie PCB na funkcjonowanie mitochondriów. Problem zaburzonych procesów energetycznych w metabolizmie mitochondrialnym u osób z autyzmem podnoszony jest często. Również toksyczny wpływ środków zmniejszających palność jest znany.
W Wielkiej Brytanii badano ostatnio zawartość środków zmniejszających palność oraz PCB w… kurzu w pomieszczeniach przedszkolnych i klasach szkoły podstawowej. Okazało się, że małe dzieci narażone są na znaczną ekspozycję na te substancje.
Środki zmniejszające palność stosowane są m. in. w meblach, tkaninach, dywanach, komputerach oraz innych urządzeniach stosowanych w gospodarstwach domowych. W trakcie użytkowania produktu, substancje takie mogą się uwalniać i wiązać z cząsteczkami kurzu. Dostają się do organizmu przez układ pokarmowy i oddechowy.
Z kolei badacze z University of Iowa twierdzą, że PCB są obecne w większej ilości barwników, niż się wcześniej wydawało. Zanieczyszczone pigmenty stosowane były w różnych rodzajach farb, tuszów, kosmetyków, a także w tworzywach sztucznych. PCB mogą też powstawać samoistnie podczas procesów produkcji z użyciem substancji zawierających chlor. Pomimo zakazu ich stosowania w USA oraz znacznych ograniczeń w UE nadal jesteśmy narażeni na wpływ tych toksycznych substancji, ponieważ w środowisku ulegają one powolnemu rozkładowi i posiadają zdolność do bioakumulacji (czyli gromadzenia się w tkankach ustroju).

Źródła:
Environmental Health News, 06 lipca 2010
tutaj
Environmental Health News, 09 lipca 2010
tutaj

poniedziałek, 28 czerwca 2010

Stres oksydacyjny u dzieci z autyzmem: badania w krajach arabskich

W Ain Shams University w Kairze badano związek między stresem oksydacyjnym i autoimmunizacją.

Stres oksydacyjny: zaburzenie równowagi pomiędzy działaniem reaktywnych form tlenu (wolnych rodników) a zdolnością do ich neutralizacji.
Autoimmunizacja: nieprawidłowa reakcja układu odpornościowego skierowana przeciwko własnym tkankom.


W grupie 44 egipskich dzieci autystycznych i 44 zdrowych dokonano pomiaru izoprostanów F2 (jako markerów peroksydacji lipidów) i peroksydazy glutationowej (jako enzymów przeciwutleniających) oraz wskazania przeciwciał przeciwneuronalnych.
Stres oksydacyjny stwierdzono u 88,64% osób z autyzmem. Aktywność przeciwneuronalną istotnie z nim związaną stwierdzono u 54,5% dzieci z autyzmem.
Silny związek między stresem oksydacyjnym i reakcją autoimmunologiczną u dzieci autystycznych wskazuje na możliwą rolę stresu oksydacyjnego (poprzez indukcję autoimmunizacji) u niektórych pacjentów.

Z kolei w King Saud University w Rijadzie (Arabia Saudyjska) analizowano rolę wybranych jonów związanych z metabolizmem energetycznym i stresem oksydacyjnym.
Grupa badana składała się z 30 pacjentów z autyzmem i 30 zdrowych. Oznaczano poziom sodu, potasu, magnezu, wapnia i ołowiu oraz stężenie aldehydu malonowego (jako końcowego produktu peroksydacji lipidów).
Zmiany w mierzonych poziomach wybranych jonów oraz wysoki poziom peroksydacji lipidów, w porównaniu do grupy kontrolnej, potwierdzają, że stres oksydacyjny i wadliwa produkcja energii w mitochondriach mogą stanowić podstawowy czynnik sprawczy w patogenezie autyzmu.

Źródła:
Journal of Neuroimmunology, 26.02.2010
tutaj
Clinical Biochemistry, styczeń 2010
tutaj

czwartek, 24 czerwca 2010

Autyzm a zaburzenia czynności mitochondriów

Znamy biomarkery świadczące o dysfunkcji mitochondriów (patrz post z dn. 17.05.2010 r.).
D. Rossignol i J. Bradstreet, z International Child Development Resource Center w Melbourne, przedstawiają swoje spostrzeżenia nt. zaburzeń czynności mitochondriów i ich powiązania z autyzmem.
Zaburzenie funkcji mitochondriów (MtD) może powodować zmniejszenie poziomu glutationu i prowadzić do przewlekłych problemów w funkcjonowaniu przewodu pokarmowego, ponieważ jego prawidłowe działanie jest silnie uzależnione od glutationu
Wiele badań wskazuje, że zaburzenia gastryczne powszechnie występują w autyzmie, m. in. w postaci przewlekłych zaparć. Zaparcie jest często obserwowane u pacjentów z zaburzeniami mitochondriów. W niektórych przypadkach autyzmu może być ono przejawem MtD. Nieprawidłowości w utlenianiu kwasów tłuszczowych (notowane u osób z autyzmem), mogą również odzwierciedlać nieprawidłowe funkcjonowanie mitochondriów. Ponadto drgawki i obniżone napięcie mięśniowe u osób z autyzmem mogą być objawami MtD.
Możliwe przyczyny MtD w autyzmie nie są znane, ale być może zaburzenia te są wtórnym objawem wynikającym z ekspozycji na niektóre toksyny środowiskowe. Różne substancje mogą doprowadzić do zmniejszenia wydajności mitochondriów lub osłabienia ich działania poprzez zwiększenie obciążenia organizmu przez wolne rodniki wynikającego ze stresu oksydacyjnego. Są to: kwas walproinowy, talidomid, narażenie na wirusy różyczki oraz cytomegalii, pestycydy, polichlorowane bifenyle (PCB), chemikalia przemysłowe i metale ciężkie (rtęć, ołów, kadm, nikiel, arsen). Również kwas propionowy produkowany przez bakterie z gatunku Clostridium (istotne zwiększenie ich ilości stwierdzono u osób z autyzmem) w przewodzie pokarmowym utrudnia funkcjonowanie mitochondriów poprzez hamowanie fosforylacji oksydacyjnej.
Stosowanie antyoksydantów i innych suplementów może prowadzić do poprawy funkcjonowania mitochondriów i zmniejszania objawów negatywnych. Stwierdzono efekty terapeutyczne po stosowaniu środków takich jak: acetyl-l-karnityna, koenzym Q10, idebenon, tiamina (witamina B1), pirydoksyna (witamina B6), ryboflawina (witamina B2), witamina C i ekstrakt Ginkgo biloba.

Źródło:
American Journal of Biochemistry and Biotechnology, 2008 (.pdf)
tutaj

poniedziałek, 21 czerwca 2010

Udział środowiska i fizjologii podatnej na jego wpływy w powstawaniu autyzmu

Marta R. Herbert (TRANSCEND Research Program, Pediatric Neurology, Massachusetts General Hospital, Charlestown, USA) przedstawia dane ilustrujące wkład czynników środowiskowych w powstawanie zaburzeń ze spektrum autyzmu. Oto najważniejsze tezy z jej pracy.
Niektóre warianty genów w autyzmie powodują zmiany w podatności na obciążające czynniki środowiskowe. Mutacje de novo oraz zaawansowany wiek rodziców, jako czynnik ryzyka autyzmu, sugerują również rolę środowiska. Patofizjologia układu nerwowego, w tym stres oksydacyjny, stan zapalny i zaburzenia czynności mitochondriów, może być konsekwencją wpływów środowiska, takich jak: zanieczyszczenia powietrza, związki fosforoorganiczne, metale ciężkie. Czynniki żywieniowe i zanieczyszczenia żywności mogą również przyczyniać się do powstawania ryzyka.
Niektóre z podstawowych zaburzeń biochemicznych można odwrócić poprzez ukierunkowane interwencje żywieniowe.
Wpływ środowiska może rozpocząć się już w okresie prenatalnym i tym samym przyczynić do zmian w rozwoju centralnego układu nerwowego oraz innych systemów organizmu, a także zmian epigenetycznych (dziedziczności pozagenowej).
Ogólnie rzecz ujmując, dowody związane z częstością występowania, genetyką, mechanizmami patofizjologicznymi i ekspozycją na szkodliwe substancje, sugerują rolę czynników środowiskowych w powstawaniu autyzmu.

Wkrótce: kilka postów rozwijających temat stresu oksydacyjnego oraz funkcjonowania mitochondriów...

Źródło:
Current Opinion in Neurology, kwiecień 2010
tutaj

środa, 2 czerwca 2010

Najważniejsze wydarzenia 2009

Autism Speaks, największa na świecie organizacja zajmująca się badaniami nad autyzmem opublikowała pierwszą dziesiątkę najważniejszych odkryć w roku 2009. Oto ona:

- Epidemiologia: zaburzenia autystyczne są obserwowane u 1% populacji, to znacznie więcej niż do tej pory

- Wczesna interwencja: pierwsza duża randomizowana próba wykazała, że intensywna terapia u małych dzieci na spektrum autystycznym znacznie poprawia umiejętności poznawcze, językowe i adaptacyjne

- Genom: odkryto kolejne geny odpowiadające za [nieprawidłowy] rozwój mózgu i powstawanie cech autystycznych u dzieci

- Genom: nowych informacji dostarczyły też badania nad
powielonymi czy utraconymi odcinkami DNA (tzw Copy Number Variations, CNV)

- Genom: zaobserwowano, że mutacja genu neurexin-1alpha
ma wpływ na powstawanie symptomów autyzmu u myszy

- Komórki: osoby z uszkodzonymi mitochondriami częściej mają autystyczne regresy, zwłaszcza w okresach gorączki

- Mowa: wbrew wcześniejszym opiniom, dzieci autystyczne mogą nauczyć się mówić nawet jeśli występował całkowity brak mowy do piątego roku życia
- Mowa: utrata umiejętności językowych występuje niemal wyłącznie u dzieci autystycznych; w przypadku innych zaburzeń - bardzo rzadko
- Immunologia: potwierdzono, na podstawie największych do tej pory badań, związek pomiędzy występowaniem chorób autoimmunologicznych (zwłaszcza u matek) a autyzmem u dzieci

- Rehabilitacja: terapia farmakologiczna w połączeniu z ćwiczeniami jest skuteczniejsza niż sama farmakologia
źródło: Autism Speaks

tutaj

poniedziałek, 17 maja 2010

Zaburzenia czynności mitochondriów w autyzmie: przyczyna czy skutek?

Znaczny odsetek pacjentów autystycznych przejawia dysfunkcje procesów energetycznych w metabolizmie mitochondrialnym.
Świadczą o tym następujące markery: podwyższony poziom kwasu pirogronowego, kwasu mlekowego i alaniny we krwi, moczu i/lub płynie mózgowo-rdzeniowym; niedobór karnityny w surowicy; nasilony stres oksydacyjny.
U niektórych pacjentów zaburzenia te udało się wyjaśnić przez obecność specyficznych mutacji, bądź też rearanżacji DNA mitochondrialnego lub jądrowego.
Jednak w większości przypadków, nieprawidłowy metabolizm energetyczny nie może być bezpośrednio związany z konkretnymi wadami genetycznymi.
Zajęli się tym problemem naukowcy z Università degli Studi di Bari oraz Istituto di Biomembrane e Bioenergetica (Bari) we Włoszech.
Najnowsze dane z pośmiertnych badań mózgów osób z autyzmem zwracają uwagę w stronę nieprawidłowości w funkcjonowaniu mitochondriów jako możliwych dalszych konsekwencji m. in. zmian w komórkowej sygnalizacji wapniowej.
I jeszcze pewien trop „środowiskowy”.
Dioksynopodobne PCB (polichlorowane bifenyle) są uważane za związki bardzo toksyczne. Zdecydowana ich większość dostaje się do naszych organizmów wraz z żywnością. Występują również w urządzeniach i odpadach. W USA ich stosowanie jest zabronione a w Unii Europejskiej dozwolone, lecz obwarowane ograniczeniami. Polichlorowane bifenyle i ich substytuty oraz urządzenia i produkty zawierające te substancje są w krajach UE obiektem skrupulatnej inwentaryzacji i muszą być zniszczone w sposób bezpieczny dla środowiska do końca 2010 roku.
M. in. PCB mogą powodować zakłócenia homeostazy i sygnalizacji wapniowej w centralnym układzie nerwowym...

Źródła:
PubMed, maj 2010
tutaj
oraz informacje własne