Pokazywanie postów oznaczonych etykietą neurony. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą neurony. Pokaż wszystkie posty

sobota, 28 października 2023

Nieprawidłowości neurorozwojowe prowadzące do autyzmu: nowe badania

Badacze z Yale University modelowali zmiany w rozwoju przodomózgowia u chłopców z ASD oraz ich zdrowych ojców z 13 rodzin. Używali do tego obiecujących możliwości modelowania rozwoju tkanki mózgowej: organoidów korowych (mózgowych). Ponadto zastosowano transkryptomikę jednokomórkową, czyli badanie dynamicznej aktywności genów (transkrypcji) zachodzącej w odpowiedzi na różne czynniki.

Wyhodowano organoidy mózgowe (małe, trójwymiarowe repliki rozwijającego się mózgu) z komórek macierzystych 13 chłopców, u których zdiagnozowano autyzm. Ośmiu z nich miało  makrocefalię. Następnie porównano rozwój mózgu dzieci do rozwoju mózgu ich ojców. Ok. 20% przypadków autyzmu (są one zwykle cięższe) dotyczy osób cierpiących na makrocefalię (obwód głowy dziecka przekracza 97 centyl).

Powiązano z pojawieniem się ASD dwie wyraźne nieprawidłowości neurorozwojowe, które występują zaledwie kilka tygodni po rozpoczęciu rozwoju mózgu. U dzieci z tymi samymi objawami występują dwie różne formy zmienionych sieci neuronowych. Mają one związek z  wielkością mózgu.

Dzieci z autyzmem i makrocefalią wykazywały nadmierny wzrost neuronów pobudzających w porównaniu do ich ojców, podczas gdy organoidy innych dzieci z ASD wykazywały deficyt tego samego typu neuronów.

Zmiany transkryptomiczne pokazały, że różnice mogły wynikać z rozbieżnej ekspresji czynników transkrypcyjnych wpływających na los komórek podczas wczesnego rozwoju kory mózgowej.

Możliwość śledzenia wzrostu określonych typów neuronów może pomóc w diagnozowaniu autyzmu. Ponadto istotne może być także identyfikowanie przypadków autyzmu, w których można stosować leki w celu łagodzenia objawów nadmiernej aktywności neuronów pobudzających (padaczka).

Źródło:
„Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis”
Nature Neuroscience, volume 26, 10 sierpnia 2023 r.

środa, 11 października 2017

Wadliwa transmisja komórkowa zakłóca rozwój kory mózgowej

W czasie rozwoju mózgu, w fazie embrionalnej, występuje skomplikowana kaskada procesów komórkowych związanych z pewnym rodzajem komórek macierzystych – komórkami progenitorowymi (prekursorowymi). Wytwarzają one neurony i pobudzają prawidłowy rozwój kory. Jeśli nie działają właściwie, mózg może rozwijać się nieprawidłowo.
Poprzednie badania zainspirowały naukowców z UNC School of Medicine, kierowanych przez Evę Anton, do postawienia hipotezy, że coś w procesie przekazywania białek Wnt w komórkach progenitorowych może mieć związek z zakłócaniem rozwoju kory mózgowej. Sugerowały one, że w niektórych przypadkach długa droga do objawów autyzmu rozpoczyna się wraz z zaburzeniem rozwoju komórek macierzystych w korze. Ponadto przeprowadzone wcześniej, przez innych badaczy, analizy genetyczne osób z autyzmem, wskazywały wyraźnie na to, że szlaki sygnałowe Wnt zostały u nich zakłócone.

Białka Wnt to glikoproteiny, których rolą jest przede wszystkim regulacja procesów różnicowania i polaryzacji, migracji i podziałów komórkowych na poziomie komunikacji międzykomórkowej. Zaburzenia w komunikacji zależnej od Wnt prowadzą do różnego rodzaju patologii w organizmie.

Autorzy obecnego badania sprawdzili eksperymentalnie, że taką nieprawidłowość może spowodować usunięcie białka APC, co prowadzi do niekontrolowanych wzorców ekspresji genów w komórkach progenitorowych, zakłócenia szlaku Wnt i zaburzenia prawidłowego rozwoju mózgu. Chcą jeszcze ponadto sprawdzić, czy deregulacja sygnału Wnt powoduje zmiany w ekspresji genów wiązanych z autyzmem. Niektóre z tych genów ulegają ekspresji w komórkach progenitorowych.

Białko APC bierze udział w regulacji wielu procesów w komórce, obejmujących podział, migrację, adhezję i różnicowanie komórek.

Choć wad związanych z komórkami progenitorowymi nie da się leczyć w dojrzałych neuronach mózgu, jednak najprawdopodobniej będzie można próbować określić, co uległo zmianie i co trzeba poprawić u osób z objawami autyzmu spowodowanego przez subtelne, ale istotne zmiany w mózgu przed urodzeniem.

Źródła:
„APC sets the Wnt tone necessary for cerebral cortical progenitor development”
Genes & Development, 15 września 2017 r.
ScienceDaily, 20 września 2017 r.

poniedziałek, 17 września 2012

Nowe badanie: zakłócenia w transmisji sygnałów nerwowych mogą być odwracalne?

Od lat trwają badania nad neuroliginami, białkami, które zapewniają prawidłową komunikację między komórkami nerwowymi a są zmienione u osób z autyzmem w wyniku mutacji w genach je kodujących.
Regulują one ilość receptorów w błonie postsynaptycznej, są więc kluczowe dla prawidłowego powstawania i funkcjonowania połączeń nerwowych. Geny neuroligin są odpowiedzialne za regulowanie równowagi pomiędzy funkcjami hamującymi i pobudzającymi synaps.
Wcześniejsze badania wykazały, że u szczurów z neuronami pozbawionymi neuroligin połączenia pomiędzy komórkami nerwowymi były zmienione w bardzo podobny sposób jak u dzieci z autyzmem.
Badacze z Biozentrum w Universität Basel (Szwajcaria) w modelu zwierzęcym sprawdzali efekty pozbawienia genu kodującego neuroliginę-3 (NLGN3) w analogii do autyzmu.
Defekty synaptycznej transmisji sygnału związane były ze wzrostem poziomu receptorów glutaminianu, co hamowało procesy adaptacji w przekazywaniu informacji (uczenie się) i negatywnie wpływało na funkcjonowanie mózgu w dalszej perspektywie.
Istotą tych badań jest stwierdzenie, że taka sytuacja jest odwracalna.
Gdy naukowcy przywrócili produkcję neuroliginy-3 u myszy, komórki nerwowe zmniejszyły produkcję receptorów glutaminianu do normalnego poziomu. Defekty strukturalne w mózgu typowe dla autyzmu zniknęły. Wniosek jest taki, że można by oddziaływać na te receptory farmakologicznie w celu ograniczenia zaburzeń charakterystycznych dla autyzmu.

Źródła:
Science, 13 września 2012 r. (on-line)
tutaj
ScienceDaily, 14 września 2012 r.
tutaj
Universität Basel, 14 września 2012 r. (w języku niemieckim)
tutaj

poniedziałek, 30 kwietnia 2012

PCB a mechanizmy wzrostu dendrytów i autyzm

Polichlorowane bifenyle (PCB) uruchomiają komórkowy łańcuch wydarzeń, który prowadzi do powstawania nadmiaru dendrytów i burzy normalne wzorce neuronalnych połączeń w mózgu.
Mówią o tym wyniki ogłoszonych w ubiegłym tygodniu dwóch, powiązanych ze sobą, badań.
W pierwszym z nich (University of California w Davis) sprawdzano wzrost ilości dendrytów u urodzonych szczurów, których matki narażone były na ekspozycję na PCB. W drugim (Washington State University) analizowano jak PCB wpływa na neurony szczura w kulturach komórkowych, w stadiach rozwojowych podobnych do tych w trzecim trymestrze ciąży u ludzi. W obu badaniach poziomy PCB były podobne do występujących w diecie człowieka (np. w mleku matki) i znalezionych ludzkich tkankach (np. w łożysku).
Autorzy sądzą, ekspozycja na PCB może zwiększyć prawdopodobieństwo wystąpienia autyzmu u dzieci, u których genetyczna predyspozycja modyfikuje procesy tworzenia połączeń między neuronami.
Ocena mózgów szczurów narażonych na PCB we wczesnym okresie życia wykazała znaczną nadprodukcję dendrytów. Badania komórkowe udowodniły, że PCB inicjowały sygnalizacyjne szlaki wapniowe, które prowadziły do powstania nieprawidłowej architektury mózgu. Natomiast przyrost dendrytów była normalny, gdy komórkowy szlak został zablokowany.
Eksperyment pomógł zidentyfikować, po raz pierwszy, czynnik spustowy dla tego komórkowego łańcucha zdarzeń jakim są receptory rianodynowe RyR regulujące wydzielanie wapnia. Badania te pokazały, że RyR to niezbędny element w procesie, który kontroluje wzrost dendrytów.
Wcześniej Isaac Pessah (autor jednego z badań) wykazał, że receptory RyR są selektywnie aktywowane przez PCB niedioksynopodobne.
Mówi on: „Wapniowe szlaki sygnalizacyjne są wiązane z niektórymi formami zaburzeń ze spektrum autyzmu i mimo, że narażenie środowiskowe samo w sobie nie powoduje autyzmu, te nowe badania dostarczają dowodów, że PCB mogą mieć wpływ na powstawanie ryzyka autyzmu u dzieci predysponowanych genetycznie.”

Źródła:
ScienceDaily, 25 kwietnia 2012 r.
Environmental Health Perspectives, 25 kwietnia 2012 r. (badania sygnalizacji wapniowej)
Environmental Health Perspectives, 25 kwietnia 2012 r. (badania dendrytów)