Pokazywanie postów oznaczonych etykietą MRI. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą MRI. Pokaż wszystkie posty

piątek, 16 czerwca 2023

Nerwiakowłókniakowatość typu 1 (mutacja genu NF1) i związek z autyzmem: nowe badania dotyczące kamuflażu objawów (zmian behawioralnych) u autystycznych samic myszy

Kilka lat temu dowiedzieliśmy się z badań przeprowadzonych przez naukowców z Washington University na grupie pacjentów z USA, Belgii, Wielkiej Brytanii i Australii, że mutacje genu NF1, występujące u pacjentów cierpiących na nerwiakowłókniakowatość typu 1 mają też związek z rozwojem autyzmu u blisko połowy pacjentów z tą chorobą. Nerwiakowłókniakowatość typu 1 (NF1) jest dziedziczną, nieuleczalną chorobą z licznymi zmianami skórnymi, neurologicznymi, kostnymi itp. Koreluje również z zaburzeniami neurorozwojowymi. Ten stan jest związany ze wzrostem neuroprzekaźnictwa kwasu gamma- aminomasłowego (GABA), a w konsekwencji brakiem równowagi pobudzenia/hamowania i zachowaniami autystycznymi zarówno w modelach ludzkich, jak i zwierzęcych.

Coraz częściej zauważa się znaczenie płci biologicznej zarówno w prawidłowym dojrzewaniu mózgu, jak i w zaburzeniach neurorozwojowych. Mają one różną częstość występowania u mężczyzn i kobiet. W obecnym badaniu sprawdzano wpływ płci biologicznej na układ GABA- ergiczny i zmiany behawioralne wywołane mutacją NF1 w modelu zwierzęcym. Określano wielkość hipokampa oraz poziomy GABA i glutaminianu w tej strukturze. Przeprowadzono behawioralną ocenę lęku, pamięci, komunikacji społecznej i powtarzalnych zachowań.

Okazało się, że młode samice myszy wykazywały zwiększone poziomy GABA w hipokampie. Przejawiały one wyraźne zachowania o charakterze niepokoju, lepszą wydajność pamięci i lepsze zachowania społeczne. Młode samce myszy miały zwiększoną objętość i grubość hipokampa, przy spadku poziomów receptora GABA(A). Manifestowały większą skłonność do powtarzalnych zachowań.
Wyniki sugerują dymorficzny wpływ mutacji NF1 na neurochemię hipokampa i zachowania podobne do autyzmu. Po raz pierwszy zidentyfikowano zachowanie typu „kamuflującego” u samic modelu zwierzęcego, które maskowało ich cechy autystyczne. To zwiększa trudności diagnostyczne ASD u kobiet. Podobnie jak u ludzi, w modelu zwierzęcym kobiety wykazują wyższy poziom lęku, ale lepsze funkcje wykonawcze i zachowania społeczne, wraz z brakiem równowagi stosunku hamowania do pobudzenia. Mężczyźni przejawiają więcej zaburzeń eksternalizacyjnych, takich jak nadpobudliwość i powtarzalne zachowania plus deficyty pamięci.

Źródła:
„Neurobehavioral sex-related differences in Nf1+/− mice: female show a “camouflaging”-type behavior”
Biology of Sex Differences, 14, 24 (2023)
„Disease Burden and Symptom Structure of Autism in Neurofibromatosis Type 1”
JAMA Psychiatry, 19 października 2016 r.

niedziela, 10 kwietnia 2022

Przerost ciała migdałowatego u niemowląt które otrzymają diagnozę autyzmu

Wcześniejsze badania wykazały, że ciało migdałowate jest powiększone u dzieci z ASD. Kiedy to się zaczyna, jaki ma związek z późniejszymi objawami autyzmu i czy jest specyficzne dla tego rodzaju zaburzeń neurorozwojowych – nie wiemy.

Ciało migdałowate to struktura ważna dla przetwarzania informacji związanych z kontaktami społecznymi (rozpoznawanie emocji, a także zagrożenia w otoczeniu).

W obecnym badaniu przy pomocy rezonansu magnetycnego (MRI) skanowano w wieku 6, 12 i 24 mies.: 29 niemowląt z zespołem łamliwego chromosomu X, 58 z wysokim prawdopodobieństwem ASD (posiadały starsze rodzeństwo z takim rozpoznaniem), u których później zdiagnozowano autyzm, 212 z wysokim prawdopodobieństwem i bez późniejszej diagnozy ASD oraz 109 niemowląt z grupy kontrolnej.

Dzieci, u których rozwinęło się ASD, miały typową objętość ciała migdałowatego w 6 miesiącu, ale wykazywały znacznie szybszy wzrost ciała migdałowatego między 6 a 24 miesiącem. Po 12 miesiącach ta grupa miała znacznie większą objętość ciała migdałowatego w porównaniu z wszystkimi innymi grupami. Tempo wzrostu tej struktury między 6 a 12 miesiącem było istotnie związane z większymi deficytami społecznymi w 24 miesiącu, kiedy zdiagnozowano u nich ASD. Niemowlęta z zespołem łamliwego chromosomu X miały trwałą i znacznie powiększoną objętość jądra ogoniastego we wszystkich grupach wiekowych między 6 a 24 miesiącem, w porównaniu z wszystkimi innymi grupami.

Doniesienia te ilustrują szereg specyficznych zmian we wczesnym rozwoju mózgu dzieci z autyzmem, wraz z dynamicznymi zmianami w zachowaniu. Prowadzi to do pojawienia się pełnego ASD, obserwowanego w postacu objawów w 2 i 3 roku życia.

Wcześniejsze badania wykazały, że chociaż deficyty społeczne, które są cechą charakterystyczną dla autyzmu, nie występują w wieku sześciu miesięcy, to niemowlęta, u których rozwinie się później ASD, mają problemy z tym, jak zwracają uwagę na bodźce wzrokowe.

Autorzy stawiają hipotezę, że te wczesne trudności z przetwarzaniem informacji wzrokowych mogą powodować zwiększony nacisk na ciało migdałowate, prowadząc do jego przerostu. Im szybciej ciało migdałowate rosło w okresie niemowlęcym, tym więcej trudności społecznych wykazywało dziecko, gdy rok później zdiagnozowano u niego autyzm.

Źródło:
Subcortical Brain Development in Autism and Fragile X Syndrome: Evidence for Dynamic, Age- and Disorder-Specific Trajectories in Infancy”
American Journal of Psychiatry, 25.03.2022
tutaj

poniedziałek, 6 maja 2013

Agenezja ciała modzelowatego i autyzm – mapowanie mózgu

Grupa badaczy z University of California (San Francisco i Berkeley) próbowała odwzorować w modelu trójwymiarowym, połączenia w obrębie mózgu u siedmiu dorosłych osób, które przez wady genetyczne, nie posiadają ciała modzelowatego, łączącego obydwie półkule. Zastosowano badania MRI oraz narzędzie matematyczne – analizę sieci.

Agenezja ciała modzelowatego – niedorozwój ciała modzelowatego (spoidła wielkiego mózgu) o możliwej, dużej różnorodności (od częściowego po całkowity brak).

W poście z 24 kwietnia 2013 r. pisałem o badaniach genetycznych myszy z autystycznego szczepu BTBR. One również posiadały agenezję ciała modzelowatego.
Niektórzy ludzie, którzy rodzą się z agenezją, nie mają widocznych objawów choroby neurologicznej i przejawiają prawidłowy poziom rozwoju umysłowego. Jednak około 40 procent osób z tą wadą wrodzoną jest bardziej narażone na autyzm.
Porównano mózgi siedmiu osób z agenezją do jedenastu zdrowych. Wiązki w zakręcie obręczy były mniejsze i neurony wchodzące w ich skład miały mniej połączeń z innymi neuronami w pozostałych obszarach mózgu. Ponadto topologia połączeń mózgowych u osób z agenezją była bardziej zmienna.
Zrozumienie, jak odmienne są połączenia w mózgach różnych osób predysponowanych do wystąpienia autyzmu, może pomóc w zidentyfikowaniu biomarkerów związanych z obrazowaniem, które były by pomocne w diagnozowaniu autyzmu.

Źródła:
NeuroImage, vol. 70, 15 kwietnia 2013 r.
ScienceDaily, 28 lutego 2013 r.
tutaj

poniedziałek, 19 listopada 2012

Obrazowanie mózgu a diagnozowanie autyzmu: to nie takie proste, jak by się wydawało

Bardzo ciekawy artykuł ukazał się w listopadzie w czasopiśmie Nature. Nicholas Lange (Harvard Medical School, Boston), używając przewrotnego określenia „obrazowanie autyzmu”, zastanawia się nad przydatnością technik obrazowania mózgu w procesie diagnozowania zaburzeń ze spektrum autyzmu. O tego typu badaniach donosiłem wielokrotnie – wpisy na ten temat można znaleźć klikając etykietę MRI.

Lange uważa, że techniki tego typu mają swoje miejsce w różnicowaniu, ale nie mogą być decydujące, ponieważ autyzm nie jest wciąż chorobą o określonych, biologicznie zdefiniowanych podstawach. Pomagają one oczywiście zrozumieć ten rodzaj zaburzeń.
Wolumetryczne (objętościowe) badania MRI pokazują, że ok. 1 na 5 dzieci z autyzmem przejawia w pierwszych miesiącach życia powiększenie mózgu, które normalizuje się do 18 miesiąca życia.
O takich badaniach pisałem we wrześniu 2011 r.
Funkcjonalne MRI pomaga zrozumieć jak działa mózg osoby z autyzmem podczas interakcji społecznych oraz oglądania filmów z intensywnym kontekstem społecznym.
Pozytonowa emisyjna tomografia komputerowa (PET) pokazuje różnice w rozmieszczeniu receptorów serotoniny i dopaminy oraz mówi o zmieniającej się roli serotoniny w mózgach osób z autyzmem w porównaniu ze zdrowymi. Można też uzyskać wtedy pewne wskazówki co do skuteczności leczenia farmakologicznego. Spektroskopia rezonansu magnetycznego również może okazać się pomocna w leczeniu, na przykład w szacowaniu różnic poziomu neurotransmiterów: kwasu glutaminowego (glutaminianu) i kwasu gamma-aminomasłowego (GABA). Sporym zainteresowaniem czytelników bloga cieszą się wpisy na temat Arbaclofenu (STX209), który to lek ma odgrywać właśnie rolę w regulowaniu równowagi pobudzenia-hamowania w procesach neurotransmisji.
Zdaniem autora potrzebne są duże, długoterminowe i wieloośrodkowe badania w celu identyfikacji unikalnych, fizycznych cech mózgu osoby z autyzmem. Należy zwrócić szczególną uwagę na różnice w genetyce, fizjologii, profilu immunologicznym, procesach neurochemicznych i połączeniach nerwowych pomiędzy osobami z autyzmem a osobami z innymi zaburzeniami rozwojowymi oraz zdrowymi.


Źródła:
Nature, vol. 491 (7422), 01 listopada 2012 r. (on-line: 31.10.2012)
ScienceDaily, 01 listopada 2012 r.

poniedziałek, 12 listopada 2012

Słabe zdolności językowe u dzieci z autyzmem w badaniach MRI

Badacze z Carnegie Mellon University (Pittsburgh, USA) prosili dzieci z autyzmem oraz dzieci o typowym rozwoju, aby określiły, na którym z dwóch obrazków chłopiec jest zły – niezadowolony (osąd społeczny – perspektywa emocjonalna) oraz na którym z dwóch jest on na zewnątrz (osąd fizyczny – perspektywa poznawcza).
Obie grupy z powodzeniem wykonały zadanie, ale dzieci z autyzmem wykazały mniejszą aktywność mózgu (badaną przy pomocy obrazowania MRI) w obszarach związanych z umiejętnościami społecznymi i językowymi w czasie ćwiczenia.
Pomimo tego, że język nie był wykorzystywany w czasie badania, u dzieci zdrowych językowe obszary mózgu były zaangażowane podczas podejmowania przez nie decyzji.
Zdaniem autorów wyniki potwierdzają hipotezę, że dzieci z autyzmem mogą rozpoznać nieodpowiednie społecznie zachowanie, ale mają trudności z wykorzystaniem języka mówionego, aby wyjaśnić, dlaczego za takie jest ono uważane. Sugerują one, że zmniejszone użycie języka może również utrudniać generalizację, uogólnianie przez nie przyswajanej wiedzy.

PloS ONE, 17 października 2012 r.
ScienceDaily, 17 października 2012 r.

poniedziałek, 12 marca 2012

Zmiany w mózgu znalezione u niemowląt – biomarker autyzmu?

W eksperymencie uczestniczyło 92 dzieci uznanych za zagrożone autyzmem z racji posiadania starszego rodzeństwa z taką diagnozą.
Każde miało badanie przy pomocy obrazowania tensora dyfuzji (DTI) w wieku 6 mies. oraz ocenę zachowania w wieku 24 mies.
Po 24 miesiącach, 28 niemowląt (30%) spełniało kryteria autyzmu a 64 (70%) nie.
Obie grupy różniły się rozwojem włókien istoty białej, które składają się na szlaki łączące różne obszary mózgu. Wykazały to różnice w anizotropii frakcyjnej (FA). Znaleziono różnice pomiędzy dziećmi z autyzmem i zdrowymi w 12 z 15 badanych traktów.
Sarah Paterson, dyrektor Infant Neuroimaging Lab w Children's Hospital of Philadelphia Center for Autism Research: „To niezwykle ekscytujące odkrycie. Zobaczyliśmy, że mózgi dzieci z autyzmem znacznie różnią się przed wystąpieniem behawioralnych objawów. To bardzo ważny krok w kierunku identyfikacji biomarkera ryzyka autyzmu. Pozwoli on specjalistom diagnozować autyzm znacznie wcześniej niż kiedy jest to możliwe obecnie – poprzez obserwację zachowania.”
Jason J. Wolff, główny autor badania z University of North Carolina w Chapel Hill: „Wyniki te, poprzez odkrycie wielu szlaków sugerują, że autyzm nie jest zjawiskiem izolowanym, związanym z konkretnymi regionami mózgu, lecz bardziej z mózgiem jako całością.”
Okazuje się, że być może będziemy mogli kiedyś interweniować gdy dziecko ma kilka miesięcy, aby osłabić niektóre objawy autyzmu, lub nawet zapobiegać ich wystąpieniu.
O innych badaniach istoty białej z zastosowaniem obrazowania tensora dyfuzji (DTI) pisałem w grudniu 2010 r.

Źródła:
ScienceDaily, 17 lutego 2012 r.
tutaj
American Journal of Psychiatry, 17 lutego 2012 r.
tutaj

czwartek, 18 sierpnia 2011

Aktywność mózgu jako „biomarker” ryzyka autyzmu w rodzinie

Dzisiaj przedstawiam kolejną pracę z serii eksperymentów z fMRI.
Rodzeństwo autystów wykazuje podobny wzorzec aktywności mózgu, jaki pojawia się u osób z autyzmem podczas obserwowania ekspresji emocjonalnej na twarzach.
Naukowcy z University of Cambridge opisali zmniejszoną aktywność w obszarach mózgu związanych z empatią.
Badano 120 osób: 40 z zaburzeniami ze spektrum autyzmu (w wieku 12-18 lat z diagnozą autyzmu lub zespołu Aspergera), 40 ich rodzeństwa nie dotkniętych autyzmem oraz 40 zdrowych, stanowiących grupę kontrolną.
Oglądały one twarze wyrażające emocje (szczęście, strach) oraz neutralne. Jednocześnie poddane były skanowaniu przy pomocy funkcjonalnego rezonansu magnetycznego (fMRI).
Poprzez porównanie aktywności mózgu podczas oglądania twarzy obserwowano obszary mózgu, które reagują na dany stan emocjonalny.
Badani z grup rodzeństwa osób z autyzmem (nie posiadający takiej diagnozy) prezentowali spadek aktywności w różnych obszarach mózgu (związanych z empatią, zrozumieniem emocji innych ludzi i percepcją twarzy) w porównaniu do osób bez autyzmu w historii rodziny. Wyniki osób z autyzmem pokazują, że te same obszary mózgu, jak u ich rodzeństwa, przejawiają również niższy poziom aktywności, ale w zdecydowanie większym stopniu.
Ponieważ grupy rodzeństwa bez autyzmu i kontrolna różniły się tylko posiadaniem rodzeństwa z autyzmem, różnice w aktywności mózgu można przypisać tym samym genom, które związane są z ryzykiem autyzmu.
Autorzy zastanawiają się też, dlaczego u dzieci w rodzinie obciążonej genetycznie autyzmem, u jednego z nich rozwija się autyzm a u innych nie. Jest prawdopodobne, że znaczenie mają dodatkowe, nieznane jeszcze czynniki, takie jak inne genetyczne, lub też różnice strukturalne albo funkcjonalne związane z pracą mózgu.
Dodam, że warto też wziąć pod uwagę czynniki środowiskowe, co staram się pokazywać na tym blogu od osiemnastu miesięcy...

Źródło:
Translational Psychiatry, 12 lipca 2011 r., vol. 1 (on-line)
tutaj

poniedziałek, 8 sierpnia 2011

Zakłócenia synchronizacji neuronalnej u dzieci z autyzmem

W ubiegłym tygodniu pisałem o badaniach dzieci z autyzmem przy pomocy fMRI i możliwym zastosowaniu tej metody w diagnozowaniu autyzmu. Dzisiaj chciałbym napomknąć o kolejnym eksperymencie w tym obszarze.
Obszary odpowiedzialne za funkcje językowe i umiejętności komunikacyjne są mniej zsynchronizowane funkcjonalnie między obu półkulami u małych dzieci z autyzmem niż u ich rówieśników z opóźnieniem rozwoju mowy lub rozwijających się prawidłowo.
Jest to wniosek z badań prowadzonych pod kierunkiem naukowców z University of California w San Diego prowadzonych wspólnie z badaczami z Izraela i Pittsburgha (Weizmann Institute and Carnegie Mellon University).
Im słabsza była synchronizacja, tym poważniejsze trudności w komunikacji wykazywało badane dziecko.
Synchronizacja taka oznacza skoordynowany czas aktywności neuronów w różnych obszarach mózgu. Badania prowadzono podczas snu, ponieważ nawet wtedy neurony w wydzielonych obszarach należących do układu związanego z daną funkcją zawsze pozostają w synchronizacji.
Jest to kolejny wniosek, który przybliża możliwość obiektywnego diagnozowania autyzmu przy pomocy funkcjonalnego magnetycznego rezonansu jądrowego (fMRI) jako metody wspomagającej.
O innych badaniach związanych z obrazowaniem mózgu i ich potencjalną rolą w diagnozowaniu zaburzeń ze spektrum autyzmu pisałem w grudniu 2010 r.

Źródło:
Neuron, 23 czerwca 2011 r., vol. 70 (6)
tutaj

poniedziałek, 1 sierpnia 2011

Obrazowanie mózgu - może być pomocne w diagnozowaniu autyzmu

Eksperyment z użyciem funkcjonalnego magnetycznego rezonansu jądrowego (fMRI) przeprowadzono w Columbia University w Nowym Yorku.
Raport z badań ukaże się w sierpniu w czasopiśmie Radiology, a od końca maja jest już dostępny on-line.
Badano dzieci w wieku ok. 12 lat: piętnaścioro zdrowych stanowiło grupę kontrolną, dwanaścioro autystycznych o słabych funkcjach językowych - grupę badaną. Dzieci słuchały nagrania własnych rodziców mówiących do nich, podczas gdy naukowcy badali aktywność pracujących wtedy neuronów.
Obserwowano dwa obszary mózgu: pierwotną korę słuchową (A1) oraz zakręt skroniowy górny (STG).
Aktywność w rejonie A1 nie różniła się istotnie w grupie pacjentów autystycznych oraz w grupie kontrolnej. W tej drugiej jednak aktywność w rejonie STG była zdecydowanie większa niż w grupie "autystycznej".
STG jest związane z rozumieniem wypowiedzi i wydaje się, że ten obszar mózgu u badanych autystów nie był tak wrażliwy na narrację jak u dzieci zdrowych.
Jest to kolejne badanie, które daje nadzieję na zastosowanie pomocniczych, obiektywnych metod we wczesnym diagnozowaniu autyzmu.
W innych badaniach tego typu, wspomnianych przeze mnie w grudniu 2010 r. stwierdzono, że układ połączeń w mózgu osób z autyzmem różni się znacznie w porównaniu do osób z prawidłową czynnością mózgu. Dotyczyło to obszarów w płacie skroniowym, m. in. właśnie zakrętu skroniowego górnego.

Źródło:
Radiology, 31 maja 2011 r. (przed drukiem)
tutaj

czwartek, 9 grudnia 2010

Skanowanie mózgu – precyzyjny test na autyzm?

Być może rezonans magnetyczny (MRI) stanie się dokładnym, pozbawionym subiektywnej oceny, sposobem diagnozowania autyzmu.
Zbadano 30 chłopców i mężczyzn (w wieku 7-28 lat) z autyzmem wysokofunkcjonującym oraz 30 z grupy kontrolnej. Wykorzystano, jako drugą próbę, grupę z wcześniejszego badania (odpowiednio 12 i 7 osób).
Zastosowano obrazowanie tensora dyfuzji (DTI – diffusion tensor imaging) – jedną z metod MRI.
Badano mikrostrukturę istoty białej. Okazuje się, że układ połączeń w mózgu osób z autyzmem różni się znacznie w porównaniu do osób z prawidłową czynnością mózgu. Dotyczy to obszarów w płacie skroniowym (np. zakręt skroniowy górny) zaangażowanych w funkcje językowe oraz związane z funkcjonowaniem społecznym i emocjonalnym. Znaleziono sześć różnicujących cech. Test był w stanie odróżnić osoby autystyczne od nie autystycznych z dokładnością do 94 procent.
Dr Nicholas Lange (Harvard Medical School) - główny autor badania stwierdza, że są to wstępne wyniki, które muszą być jeszcze potwierdzone w kilku kolejnych badaniach.
Test nie jest jeszcze gotowy do zastosowań klinicznych. Badania są prowadzone dalej i autorzy mają nadzieję, że zostaną zakończone wnioskami w ciągu 1-2 lat.

Źródła:
Autism Research, 02.12.2010 (przed drukiem)
tutaj
Reuters, 02.12.2010 (w bardziej przystępnej formie)
tutaj