Pokazywanie postów oznaczonych etykietą geny. Pokaż wszystkie posty
Pokazywanie postów oznaczonych etykietą geny. Pokaż wszystkie posty

sobota, 28 października 2023

Nieprawidłowości neurorozwojowe prowadzące do autyzmu: nowe badania

Badacze z Yale University modelowali zmiany w rozwoju przodomózgowia u chłopców z ASD oraz ich zdrowych ojców z 13 rodzin. Używali do tego obiecujących możliwości modelowania rozwoju tkanki mózgowej: organoidów korowych (mózgowych). Ponadto zastosowano transkryptomikę jednokomórkową, czyli badanie dynamicznej aktywności genów (transkrypcji) zachodzącej w odpowiedzi na różne czynniki.

Wyhodowano organoidy mózgowe (małe, trójwymiarowe repliki rozwijającego się mózgu) z komórek macierzystych 13 chłopców, u których zdiagnozowano autyzm. Ośmiu z nich miało  makrocefalię. Następnie porównano rozwój mózgu dzieci do rozwoju mózgu ich ojców. Ok. 20% przypadków autyzmu (są one zwykle cięższe) dotyczy osób cierpiących na makrocefalię (obwód głowy dziecka przekracza 97 centyl).

Powiązano z pojawieniem się ASD dwie wyraźne nieprawidłowości neurorozwojowe, które występują zaledwie kilka tygodni po rozpoczęciu rozwoju mózgu. U dzieci z tymi samymi objawami występują dwie różne formy zmienionych sieci neuronowych. Mają one związek z  wielkością mózgu.

Dzieci z autyzmem i makrocefalią wykazywały nadmierny wzrost neuronów pobudzających w porównaniu do ich ojców, podczas gdy organoidy innych dzieci z ASD wykazywały deficyt tego samego typu neuronów.

Zmiany transkryptomiczne pokazały, że różnice mogły wynikać z rozbieżnej ekspresji czynników transkrypcyjnych wpływających na los komórek podczas wczesnego rozwoju kory mózgowej.

Możliwość śledzenia wzrostu określonych typów neuronów może pomóc w diagnozowaniu autyzmu. Ponadto istotne może być także identyfikowanie przypadków autyzmu, w których można stosować leki w celu łagodzenia objawów nadmiernej aktywności neuronów pobudzających (padaczka).

Źródło:
„Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis”
Nature Neuroscience, volume 26, 10 sierpnia 2023 r.

wtorek, 27 czerwca 2023

Arbaclofen i autyzm: nowe doniesienia

Badania na myszach z ostatniej dekady sugerują, że arbaclofen łagodzi cechy związane z autyzmem, jak również trudności poznawcze i społeczne u tych z delecją chromosomu 16p11.2. Wyniki u ludzi nie były już tak jednoznaczne.

O kolejnych fazach badań prowadzonych przez firmę Seaside Therapeutics nad tym lekiem pisałem we wrześniu 2010 i lipcu 2011, a następnie o brakach jednoznacznych sukcesów i problemach z finansowaniem badań w czerwcu 2013 r.

Badanie z 2012 r. ( Seaside Therapeutics) pokazało że, arbaclofen poprawił zachowania społeczne osób z zespołem łamliwego chromosomu X, jednak nie zmniejszyła się drażliwość (co miało być celem), a kolejne próby wykazały, że lek nie zmienił znacząco zachowań społecznych osób z autyzmem/zespołem łamliwego chromosomu X bardziej niż placebo.

W 2013 r. firma Seaside Therapeutics wstrzymała prace nad lekiem, a następnie zbankrutowała. Ponowna analiza danych z badań (2016 r.) sugeruje, że grupa z autyzmem może odnieść pewne korzyści ze stosowania arbaclofenu. Osoby dobrze reagujące najczęściej były mówiące i miały IQ powyżej 70.

Obecnie kolejna firma (Clinical Research Associates) posiada prawa patentowe do opracowania leku na autyzm, zespół łamliwego chromosomu X i inne zaburzenia neurorozwojowe.) Nowe badania obejmowały 82 dzieci i nastolatków z autyzmem w Kanadzie w wieku od 5 do 17 lat. Inne: 122 osoby z autyzmem w całej Europie w tym samym przedziale wiekowym. Na początku obu badań uczestnicy zostali losowo przydzieleni do grup, które przyjmowały rosnące dawki (do 20 mg) arbaclofenu lub placebo trzy razy dziennie przez 16 tygodni. W porównaniu z dziećmi i nastolatkami przyjmującymi placebo, osoby przyjmujące arbaclofen wykazały znaczną poprawę zdolności motorycznych, relacji z rówieśnikami oraz nietypowych i powtarzalnych zachowań, zgodnie z ocenami rodziców. Poprawiły się również ich zdolności społeczne i komunikacyjne, oceniane w oparciu o Vineland Adaptive Behaviour Scales (VABS), ale wyniki nie były istotne statystycznie. Ogólnie arbaclofen był bezpieczny i dobrze tolerowany, a najczęstsze działania niepożądane były łagodne.

Niektóre dane wskazują na brak równowagi między pobudzeniem a hamowaniem neuronów, przynajmniej w grupie osób z zaburzeniami ze spektrum autyzmu, a także osób z zespołem łamliwego chromosomu X (FXS), jednym z najczęstszych zespołów genetycznych podobnych w obrazie do ASD. W nowych badaniach zebrano dodatkowe dane dotyczące aktywności mózgu uczestników i przetwarzania sensorycznego. Ich analiza może dostarczyć biomarkera, dzięki któremu można przewidywać, kto z większym prawdopodobieństwem zareaguje na arbaclofen. W zwierzęcych modelach FXS i ASD zauważano skuteczność agonistów GABA-B w poprawie obszaru behawioralnego, w tym regulowaniu zachowań społecznych. Arbaclofen (jako agonista GABA-B), łagodził przejawy związane z unikaniem kontaktów społecznych w FXS. Pilotażowe badanie sugerowało podobne efekty w ASD. Ocena tego efektu w kolejnej fazie badań nie pokazała żadnej różnicy w stosunku do placebo. Jednak analiza wtórna wykazała poprawę w ocenie wrażenia klinicznego dotyczącego nasilenia problemów.

Źródła:
„Trials of arbaclofen for autism yield mixed results”
Spectrum, 05 maja 2023 r.
„Swings and misses with Jeremy Veenstra-VanderWeele
Spectrum, 30 maja 2023 r.
„Arbaclofen in Children and Adolescents with Autism Spectrum Disorder: A Randomized, Controlled, Phase 2 Trial”
Neuropsychopharmacology, volume 42, 2017 r.
tutaj

piątek, 16 czerwca 2023

Nerwiakowłókniakowatość typu 1 (mutacja genu NF1) i związek z autyzmem: nowe badania dotyczące kamuflażu objawów (zmian behawioralnych) u autystycznych samic myszy

Kilka lat temu dowiedzieliśmy się z badań przeprowadzonych przez naukowców z Washington University na grupie pacjentów z USA, Belgii, Wielkiej Brytanii i Australii, że mutacje genu NF1, występujące u pacjentów cierpiących na nerwiakowłókniakowatość typu 1 mają też związek z rozwojem autyzmu u blisko połowy pacjentów z tą chorobą. Nerwiakowłókniakowatość typu 1 (NF1) jest dziedziczną, nieuleczalną chorobą z licznymi zmianami skórnymi, neurologicznymi, kostnymi itp. Koreluje również z zaburzeniami neurorozwojowymi. Ten stan jest związany ze wzrostem neuroprzekaźnictwa kwasu gamma- aminomasłowego (GABA), a w konsekwencji brakiem równowagi pobudzenia/hamowania i zachowaniami autystycznymi zarówno w modelach ludzkich, jak i zwierzęcych.

Coraz częściej zauważa się znaczenie płci biologicznej zarówno w prawidłowym dojrzewaniu mózgu, jak i w zaburzeniach neurorozwojowych. Mają one różną częstość występowania u mężczyzn i kobiet. W obecnym badaniu sprawdzano wpływ płci biologicznej na układ GABA- ergiczny i zmiany behawioralne wywołane mutacją NF1 w modelu zwierzęcym. Określano wielkość hipokampa oraz poziomy GABA i glutaminianu w tej strukturze. Przeprowadzono behawioralną ocenę lęku, pamięci, komunikacji społecznej i powtarzalnych zachowań.

Okazało się, że młode samice myszy wykazywały zwiększone poziomy GABA w hipokampie. Przejawiały one wyraźne zachowania o charakterze niepokoju, lepszą wydajność pamięci i lepsze zachowania społeczne. Młode samce myszy miały zwiększoną objętość i grubość hipokampa, przy spadku poziomów receptora GABA(A). Manifestowały większą skłonność do powtarzalnych zachowań.
Wyniki sugerują dymorficzny wpływ mutacji NF1 na neurochemię hipokampa i zachowania podobne do autyzmu. Po raz pierwszy zidentyfikowano zachowanie typu „kamuflującego” u samic modelu zwierzęcego, które maskowało ich cechy autystyczne. To zwiększa trudności diagnostyczne ASD u kobiet. Podobnie jak u ludzi, w modelu zwierzęcym kobiety wykazują wyższy poziom lęku, ale lepsze funkcje wykonawcze i zachowania społeczne, wraz z brakiem równowagi stosunku hamowania do pobudzenia. Mężczyźni przejawiają więcej zaburzeń eksternalizacyjnych, takich jak nadpobudliwość i powtarzalne zachowania plus deficyty pamięci.

Źródła:
„Neurobehavioral sex-related differences in Nf1+/− mice: female show a “camouflaging”-type behavior”
Biology of Sex Differences, 14, 24 (2023)
„Disease Burden and Symptom Structure of Autism in Neurofibromatosis Type 1”
JAMA Psychiatry, 19 października 2016 r.

poniedziałek, 27 listopada 2017

Kwas foliowy w ciąży a narażenie na pestycydy i autyzm

Badanie prowadzone w kalifornijskiej populacji sugeruje, że kwas foliowy (FA) może chronić przed toksycznością niektórych chemikaliów środowiskowych, która wpływa na wczesny rozwój dziecka. Niektóre wcześniejsze badania epidemiologiczne wskazywały na mniejsze prawdopodobieństwo ASD u dzieci, których matki przyjmowały suplementy zawierające kwas foliowy. Jedna z prac pokazała, że prawdopodobnie tylko genetycznie wrażliwe matki i dzieci (konkretny defekt metaboliczny) doświadczały zmniejszonego ryzyka autyzmu związanego z przyjmowaniem FA przez matkę. Pestycydy są z założenia neurotoksyczne i odnotowano szereg powiązań pomiędzy objawami ASD a ekspozycją na pestycydy organochlorowe, fosforoorganiczne i pyretroidowe podczas ciąży. Pisałem już o tym wielokrotnie.
W obecnie badanej grupie okazało się, że związek pomiędzy narażeniem na pestycydy w gospodarstwach domowych oraz rolnictwie i autyzmem u dziecka jest mniejszy wśród kobiet z wyższym spożyciem kwasu foliowego w okresie poczęcia, w porównaniu do kobiet z mniejszym poziomem suplementacji. Wysokie spożycie FA w pierwszym miesiącu ciąży i brak znanego narażenia na pestycydy stanowiło grupę odniesienia dla wszystkich analiz.
Można tu spekulować, że potencjalne mechanizmy ochronne są związane z rolą kwasu foliowego w naprawie DNA lub też jego wpływem na metylację DNA. Zanieczyszczenia środowiskowe, takie jak pestycydy, mogą powodować uszkodzenie DNA, jak również wywoływać nasiloną odpowiedź immunologiczną i stan zapalny, co indukuje proliferację komórkową. Stres oksydacyjny jest innym, potencjalnym mechanizmem, który może być prowokowany przez różne grupy pestycydów, a jego poziom zmniejszany przez kwas foliowy poprzez kilka ścieżek metabolicznych.
Wyniki tego badania sugerują, że suplementacja FA podjęta podczas pierwszego miesiąca ciąży mogłaby potencjalnie zmniejszyć, ale niekoniecznie wyeliminować ryzyko autyzmu, związane z ekspozycją matki na pestycydy przed i podczas ciąży.

Źródło:
„Combined Prenatal Pesticide Exposure and Folic Acid Intake in Relation to Autism Spectrum Disorder”
Environmental Health Perspectives, vol. 125 (9), wrzesień 2017 r.

środa, 11 października 2017

Wadliwa transmisja komórkowa zakłóca rozwój kory mózgowej

W czasie rozwoju mózgu, w fazie embrionalnej, występuje skomplikowana kaskada procesów komórkowych związanych z pewnym rodzajem komórek macierzystych – komórkami progenitorowymi (prekursorowymi). Wytwarzają one neurony i pobudzają prawidłowy rozwój kory. Jeśli nie działają właściwie, mózg może rozwijać się nieprawidłowo.
Poprzednie badania zainspirowały naukowców z UNC School of Medicine, kierowanych przez Evę Anton, do postawienia hipotezy, że coś w procesie przekazywania białek Wnt w komórkach progenitorowych może mieć związek z zakłócaniem rozwoju kory mózgowej. Sugerowały one, że w niektórych przypadkach długa droga do objawów autyzmu rozpoczyna się wraz z zaburzeniem rozwoju komórek macierzystych w korze. Ponadto przeprowadzone wcześniej, przez innych badaczy, analizy genetyczne osób z autyzmem, wskazywały wyraźnie na to, że szlaki sygnałowe Wnt zostały u nich zakłócone.

Białka Wnt to glikoproteiny, których rolą jest przede wszystkim regulacja procesów różnicowania i polaryzacji, migracji i podziałów komórkowych na poziomie komunikacji międzykomórkowej. Zaburzenia w komunikacji zależnej od Wnt prowadzą do różnego rodzaju patologii w organizmie.

Autorzy obecnego badania sprawdzili eksperymentalnie, że taką nieprawidłowość może spowodować usunięcie białka APC, co prowadzi do niekontrolowanych wzorców ekspresji genów w komórkach progenitorowych, zakłócenia szlaku Wnt i zaburzenia prawidłowego rozwoju mózgu. Chcą jeszcze ponadto sprawdzić, czy deregulacja sygnału Wnt powoduje zmiany w ekspresji genów wiązanych z autyzmem. Niektóre z tych genów ulegają ekspresji w komórkach progenitorowych.

Białko APC bierze udział w regulacji wielu procesów w komórce, obejmujących podział, migrację, adhezję i różnicowanie komórek.

Choć wad związanych z komórkami progenitorowymi nie da się leczyć w dojrzałych neuronach mózgu, jednak najprawdopodobniej będzie można próbować określić, co uległo zmianie i co trzeba poprawić u osób z objawami autyzmu spowodowanego przez subtelne, ale istotne zmiany w mózgu przed urodzeniem.

Źródła:
„APC sets the Wnt tone necessary for cerebral cortical progenitor development”
Genes & Development, 15 września 2017 r.
ScienceDaily, 20 września 2017 r.

czwartek, 28 września 2017

Neurotoksyny naturalne i syntetyczne w naszym środowisku

W środowisku, w którym żyjemy jest coraz więcej toksycznych, bioaktywnych substancji, mogących mieć negatywny wpływ na nasze zdrowie i samopoczucie. Niektóre, często w bardzo niskich stężeniach, są szkodliwe dla struktur oraz funkcji centralnego i obwodowego układu nerwowego człowieka. Są więc uważane za neurotoksyczne. Część z nich znacząco zakłóca strukturę i funkcję ludzkiego genomu oraz procesy ekspresji genów, czyli odczytywania informacji genetycznej z DNA. Są one zatem genotoksyczne.
Niektóre osoby lub też populacje mogą być, w związku z predyspozycjami genetycznymi i zwiększoną podatnością na czynniki środowiskowe, w ciągu całego życia bardziej narażone na choroby związane z funkcjonowaniem układu nerwowego. Istnieją dowody na to, że substancje neurotoksyczne, takie jak związki glinu, mogą odgrywać rolę inicjatora lub znacznie przyczyniać się do rozwoju choroby Alzheimera (AD) i zaburzeń ze spektrum autyzmu (ASD).
W 2015 r. zarejestrowano na świecie ponad 2 700 000 nowych patentów. Około 22% (czyli ok. 594 000 z nich) dotyczyło chemii, biochemii lub związanych z medycyną, technologicznego zastosowania związków chemicznych. Aluminium jest obecnie najczęściej używanym na świecie metalem nieżelaznym, jego roczna produkcja na świeicie wynosi około 52 miliony ton, czyli ok. 15 kilogramów na osobę. Równocześnie zwiększa się globalna produkcja i przenikanie do środowiska innych substancji neurotoksycznych, głównie ołowiu, rtęci, chromu, kadmu i tlenków azotu.
Istnieje wiele rodzajów zindywidualizowanych reakcji na ten sam związek chemiczny, który w większości sytuacji może być dość dobrze tolerowany, jednakże w niektórych przypadkach narażenie na jego działanie może doprowadzić do problemów zdrowotnych.
Podatność i predyspozycje do ASD, AD i innych chorób, związanych z funkcjonowaniem układu nerwowego, mogą być oparte na indywidualnym profilu genetycznym, epigenetycznym, biochemicznym i neurochemicznym oraz/lub czynnikach środowiskowych.
Dotyczy to przede wszystkim procesów rozwoju mózgu w przypadku dzieci, lub jego funkcjonowania w trakcie starzenia się oraz w podeszłym wieku. Ponadto wiemy, że bariery fizjologiczne takie jak przewód pokarmowy i bariera krew-mózg mogą nie być w pełni ukształtowane i przepuszczać neurotoksyny do podatnych i wrażliwych komórek.
Taka „ludzka indywidualność biochemiczna” może predysponować do genotoksycznego działania konkretnego związku chemicznego lub neurotoksyny.

Źródło:
„Natural and Synthetic Neurotoxins in Our Environment: From Alzheimer’s Disease (AD) to Autism Spectrum Disorder (ASD)”
Journal of Alzheimers Disease & Parkinsonism, 26.07.2016 r.

wtorek, 8 listopada 2016

Mutacje w mitochondrialnym DNA powiązane z autyzmem


Badacze z Cornell University w Ithaca odkryli u dzieci z rozpoznaniem zaburzeń ze spektrum autyzmu większą, niż u zdrowych członków ich rodzin, ilość szkodliwych mutacji w DNA mitochondrialnym.
O zaburzeniach funkcjonowania mitochondriów, jako jednej z możliwych przyczyn pojawiania się objawów autyzmu, pisałem już wielokrotnie. Na blogu znajduje się 16 wcześniejszych wpisów z etykietą „mitochondria”.
Nie do końca jasne są biologiczne mechanizmy tego związku. W obecnym badaniu analizowano mitochondrialny DNA (mtDNA) u 903 dzieci z ASD oraz ich zdrowego rodzeństwa i matek. Obserwowano unikalny wzór mutacji, gdzie w pojedynczej komórce występują zarówno zmutowane, jak i prawidłowe sekwencje mtDNA (heteroplazmia). Dzieci z autyzmem miały 2,2 razy więcej potencjalnie patogennych mutacji w porównaniu do rodzeństwa i 1,5 raza więcej mutacji niesynonimicznych (punktowych, zmieniających kodowany aminokwas). Mutacje mogą być dziedziczone po matce lub powstawać spontanicznie w trakcie indywidualnego rozwoju. Naukowcy zauważyli, że ryzyko związane z tymi mutacjami jest najbardziej widoczne u dzieci z niższym IQ i uboższym repertuarem zachowań społecznych, w porównaniu do zdrowego rodzeństwa. Szkodliwe mutacje występujące w mitochondrialnym DNA wiążą się ze zwiększonym ryzykiem wystąpienia problemów neurologicznych i rozwojowych, w tym zaburzeń ze spektrum autyzmu.
Mitochondria odgrywają kluczową rolę w metabolizmie, więc wyniki tego badania mogą pomóc wyjaśnić zaburzenia metaboliczne wiązane z ASD i innymi zaburzeniami neurorozwojowymi. Badanie mutacji w mtDNA rodzin wysokiego ryzyka może przyczynić się do poprawy diagnostyki i leczenia tych chorób.

Źródła:
„Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder”
PLOS Genetics, 28 października 2016 r.
tutaj
EurekAlert!, 28 października 2016 r.
tutaj

czwartek, 26 lutego 2015

Geny związane z autyzmem kluczowe w czasie rozwoju mózgu

Naukowcy z University of California, San Diego School of Medicine dowodzą, że mutacje, które są wiązane z autyzmem (warianty liczby kopii – CNV) występują w szlaku, który reguluje rozwój mózgu. Badali po prostu gdzie i kiedy dochodzi to ekspresji tych zmutowanych genów. Okazało się, że były one aktywne w różnych fazach rozwoju mózgu.

O CNV pisałem w marcu 2010 i marcu 2014 a Rafał Motriuk w czerwcu 2010 r.
W innych badaniach wykazano, że osoby z ASD posiadają o 19% więcej CNV, które zakłócają funkcjonowanie genów, od osób z grupy kontrolnej.

Zidentyfikowano sieć genów, które wykazywały podobny wzór aktywacji – KCTD13 w chromosomie 16p11.2 (często wiązanym z etiologią autyzmu) i CUL3 w innym chromosomie, w którym również zachodzą mutacje u dzieci z zaburzeniami ze spektrum autyzmu.
Szczególnym odkryciem jest, że białka kodowane przez te geny tworzą kompleks, który reguluje poziom białek RhoA, odgrywających istotną rolę w morfogenezie i migracji neuronów na wczesnych etapach rozwoju mózgu.
Regulacja szlaku KCTD13-CUL3-RhoA jest kluczowa dla połączeń w mózgu i dla jego rozmiaru. Deregulacja tego szlaku przez mutacje de novo (polecam etykietę „de novo” – o tych mutacjach pisałem już kilka razy) może być potencjalnym czynnikiem decydującym o występujących wariantach liczby kopii (duplikacjach lub delecjach) w chromosomie 16p11.2.

Źródła:
Spatiotemporal 16p11.2 Protein Network Implicates Cortical Late Mid-Fetal Brain Development and KCTD13-Cul3-RhoA Pathway in Psychiatric Diseases”
Neuron, vol 85(4), 18 lutego 2015 r.
ScienceDaily, 18 lutego 2015 r.

czwartek, 19 lutego 2015

Niski poziom witaminy D w chwili urodzenia może być czynnikiem ryzyka autyzmu

W dalszym ciągu przyglądamy się witaminie D.
Jej niedobór w późnym okresie ciąży, wraz z kilkoma innymi czynnikami, jest coraz częściej spostrzegany jako potencjalny czynnik ryzyka zaburzeń ośrodkowego układu nerwowego, jak również powstawania autyzmu.
W chwili obecnej dane z badań wskazują na trzy główne czynniki sugerujące rolę witaminy D w rozwoju ASD. Pierwszy jest związany z osobami o ciemnej skórze oraz mieszkającymi w krajach o względnym braku słońca lub też w takich, gdzie kobiety są szczelnie ubrane. Drugi to niski poziom witaminy D u noworodków. Trzeci: sezon urodzeń – w Europie mamy niższy poziom witaminy D w zimie i na wiosnę w porównaniu z latem i jesienią (brak tego efektu w Izraelu i Kalifornii można wyjaśnić wysokim nasłonecznieniem przez cały rok).
Pisałem tydzień temu o badaniach prowadzonych w latach 2011-2013 w Katarze. Dzisiaj chcę przedstawić wnioski z pracy szwedzkich I australijskich naukowców. Analizowano próbki krwi pobranej w okresie noworodkowym od 58 urodzonych w Szwecji par rodzeństwa – jedno dziecko miało zaburzenia ze spektrum autyzmu, a drugie rozwijało się prawidłowo.
Rodzeństwo bez ASD stanowiło grupę kontrolną o identycznych warunkach środowiskowych i genetycznych. Wzięto pod uwagę również inne zmienne, takie jak pochodzenie etniczne, kolejność urodzenia oraz pora roku, w której nastąpił poród. Grupa dzieci z autyzmem miała znacznie niższy poziom 25-hydroksy witaminy D – witaminy 25(OH)D.
Wyniki sugerują, że niski poziom witaminy D w chwili urodzenia może być czynnikiem ryzyka autyzmu. W przyszłych badaniach można sprawdzać, czy odpowiednia suplementacja witaminy D u kobiet w ciąży może obniżać ryzyko ASD u dziecka.

Źródło:
"Autism spectrum disorder and low vitamin D at birth: a sibling control study"
Molecular Autism, vol 6 (3), 14 stycznia 2015 r.

środa, 19 listopada 2014

Autyzm i geny – kolejne badania

Pod koniec października opublikowano wyniki dwóch badań wskazujących na kilkadziesiąt genów związanych z ryzykiem wystąpienia autyzmu.
Badacze z University of California w San Francisco oraz z ok. 50 laboratoriów na całym świecie obserwowali mutacje w ponad 100 genach. Autorzy sugerują, że w przypadku sześćdziesięciu z nich jest więcej niż 90% szans na związek tych mutacji z ryzykiem autyzmu. Większość to mutacje de novo, czyli nieobecne w genomach rodziców, lecz pojawiające się spontanicznie w komórce jajowej lub plemniku.
Wiele z tych dotkniętych mutacjami genów zaangażowanych jest w kodowanie białek związanych z tworzeniem połączeń synaptycznych i w związku z tym sieci komunikacyjnych w mózgu. Ponadto mają też związek z regulacją mechanizmu transkrypcji oraz przebudową chromatyny. Szczególnie te ostatnie procesy związane są ze zmianami w ekspresji genów, więc zaobserwowane mutacje znacząco mogą wpływać na aktywność wielu innych genów.

Transkrypcja – przepisywanie informacji genetycznej z DNA na RNA zachodzące w jądrze komórkowym.
Chromatyna – włóknista substancja występująca w jądrze komórkowym, zbudowana z DNA i białek zasadowych. Przebudowa chromatyny to modyfikacja jej struktury nukleosomowej. Chromatyna może kurczyć się i rozkurczać, powodując zmianę upakowania struktury chromosomów, co odgrywa rolę w kontroli ekspresji genów.

Źródła:
Synaptic, transcriptional and chromatin genes disrupted in autism”
Nature, 29 października 2014 r., on-line
tutaj

The contribution of de novo coding mutations to autism spectrum disorder”
Nature, 29 października 2014 r., on-line
tutaj
ScienceDaily, 29 października 2014 r.
tutaj

czwartek, 15 maja 2014

Poziom lipidów w czasie prenatalnego rozwoju mózgu i autyzm

Zaburzenia poziomu lipidów (prostaglandyna E2) w mózgu mają wpływ na funkcję białek Wnt. To może zmieniać przebieg wczesnego rozwoju embrionalnego i mieć związek z autyzmem. Wg badaczy związek z poziomem tych lipidów mają czynniki środowiskowe.

System sygnalizacji Wnt odgrywa podstawową rolę w prawidłowym rozwoju ośrodkowego układu nerwowego. Nieprawidłowe przekazywanie sygnałów z systemu PGE2 (do którego należy prostaglandyna E2) jest związane z patologią układu nerwowego.
Wyższy poziom E2 może zmienić zależne od Wnt zachowanie komórek układu nerwowego poprzez zwiększenie migracji neuronów lub zwiększenie proliferacji (namnażanie komórek przez organizm). To może to wpłynąć na organizację przewodzenia w mózgu. Ponadto podwyższony poziom E2 może zwiększyć ekspresję regulowanych przez Wnt genów (Ctnnb1, Ptgs2, Ccnd1, Mmp9), które w różnych badaniach są wiązane z autyzmem.
To badanie dostarcza dowodów molekularnych, że środowisko może zakłócać pewne zdarzenia zachodzące na wczesnym etapie rozwoju mózgu i przyczyniać się do autyzmu.

Źródła:
„Prostaglandin E2 alters Wnt-dependent migration and proliferation in neuroectodermal stem cells: implications for autism spectrum disorders”
Cell Communication and Signaling, 23 marca 2014 r.
ScienceDaily, 08 kwietnia 2014 r.

środa, 7 maja 2014

Czynniki środowiskowe coraz ważniejsze w rozumieniu przyczyn autyzmu

Badacze z Wielkiej Brytanii (King's College), Szwecji (ponownie Karolinska Institutet) oraz USA (Mount Sinai) analizowali dane ponad 2 mln dzieci urodzonych w Szwecji w latach 1982-2006, z których ponad 14 tys. miało diagnozę ASD.
Nowe badanie pokazuje, że za 50% przypadków autyzmu odpowiadają geny, natomiast pozostałe 50% wyjaśnić można czynnikami środowiskowymi i niezwiązanymi z dziedziczeniem.
Czynniki środowiskowe mogą być współdzielone w rodzinie (np. status społeczno-ekonomiczny) oraz unikalne dla danej osoby (np. powikłania okołoporodowe, infekcje u matki, leki stosowane w czasie ciąży oraz po urodzeniu dziecka). W obecnym badaniu ten ostatni rodzaj czynników był głównym źródłem zagrożeń środowiskowych.
Ponadto szacowano poziom ryzyka indywidualnego. Zagrożenie rosło wraz ze wzrostem pokrewieństwa genetycznego. Dzieci, które miały brata lub siostrę z autyzmem były ponad 10 razy bardziej narażone na autyzm. Te, które posiadały rodzeństwo przyrodnie z autyzmem – ok. 3 razy, a jeśli miały kuzyna z autyzmem – 2 razy. Nie było różnic we względnym poziomie ryzyka pomiędzy płciami.

Źródła:
The Familial Risk of Autism”
JAMA – The Journal of the American Medical Association
vol 311 (17), 07 maja 2014r.
ScienceDaily, 04 maja 2014 r.

środa, 16 kwietnia 2014

Otyłość rodziców i ryzyko autyzmu u dziecka

Celem badania prowadzonego w Norwegii było sprawdzenie związku pomiędzy wskaźnikiem BMI matki i ojca oraz ryzykiem zaburzeń ze spektrum autyzmu u dzieci.
Analizowano dane prawie 93 tys. dzieci, średnia wieku wynosiła 7,4. W badanej próbie 419 dzieci w miało zdiagnozowane ASD, w tym: 162 autyzm, 103 zespół Aspergera, 154 całościowe zaburzenia rozwojowe nie określone. Otyłość u matek (BMI więcej lub równe 30) nie była istotnie skorelowana z ryzykiem ASD. Otyłość u ojców wiązała się ze zwiększonym ryzykiem: autyzm 0,27% u dzieci otyłych ojców i 0,14% u tych, których ojcowie mieli prawidłową wagę (BMI  poniżej 25), zespół Aspergera odpowiednio 0,38% i 0,18%. Nie stwierdzono związku dla całościowych zaburzeń rozwojowych nie określonych.
Zauważyć można podwojenie ryzyka rozwoju autyzmu i zespołu Aspergera u dziecka, jeśli ojciec był otyły. Jest to zaskakujące, ponieważ raczej otyłość matki wiąże się z ewentualnymi czynnikami ryzyka dla późniejszego rozwoju różnych problemów u dziecka. Kontrolowano zmienne, które mogły mieć wpływ na grupę badaną: wykształcenie, wiek, palenie tytoniu, zaburzenia psychiczne, terapia hormonalna przed zajściem w ciążę, stosowanie kwasu foliowego, cukrzyca u matki, stan przedrzucawkowy i waga dziecka po urodzeniu.
Ojcowska otyłość jest więc niezależnym czynnikiem ryzyka ASD u dzieci. Badacze podkreślają w tym przypadku znaczenie mutacji genetycznych oraz ewentualnych zmian epigenetycznych. To jeszcze tylko teoria i wymaga kolejnych badań, zanim naukowcy będą mogli zastanawiać się nad ewentualnymi związkami przyczynowymi. Zagadnienie to warto dalej sprawdzać w badaniach genetycznych i epigenetycznych.

Źródła:
Parental obesity and risk of autism spectrum disorder”
Pediatrics, 07 kwietnia 2014 r. (on-line)
ScienceDaily, 07 kwietnia 2014 r.

czwartek, 6 marca 2014

Dlaczego autyzm występuje częściej u mężczyzn – kolejne doniesienia

Wiemy, że mężczyźni są bardziej narażeni na zaburzenia rozwoju układu nerwowego.
Pisałem w marcu 2013 r. o tym, że różnica ta, w przypadku autyzmu, może wynikać z czynników zwiększających ryzyko wśród chłopców, lub też czynników chroniących dziewczynki. Ponadto w styczniu 2014 r. przytoczyłem ustalenia z 2010 r. pokazujące zmianę szacunków w odniesieniu do płci u dzieci z autyzmem – 7 do 1 na rzecz chłopców.
W nowym badaniu naukowcy ze Szwajcarii i USA analizowali dane genetyczne dwóch grup: jednej składającej się z prawie 16 tys. osób z zaburzeniami rozwoju układu nerwowego i drugiej, składającej się z około 800 rodzin dotkniętych ASD.
Badacze sprawdzali zarówno warianty liczby kopii (CNV), jak i warianty pojedynczych nukleotydów (SNV) dotyczących sekwencji DNA.

Warianty liczby kopii (CNV) to delecje i duplikacje fragmentów DNA, które występują pojedynczo, w kilku powtórzeniach, wcale lub poprzestawiane.

Okazało się, że kobiety z zaburzeniami neurologicznymi lub ASD miały większą liczbę szkodliwych CNV niż mężczyźni z podobnym rozpoznaniem. Ponadto kobiety z ASD miały większą liczbę szkodliwych SNV niż mężczyźni z ASD. Wyniki te sugerują, że mózg kobiety wymaga bardziej ekstremalnych zmian genetycznych, w odróżnieniu od męskiego, do wystąpienia objawów autyzmu lub zaburzeń rozwoju układu nerwowego. Czyli kobiety funkcjonują o wiele lepiej, niż mężczyźni dotknięci podobnymi mutacjami mającymi wpływ na rozwój mózgu.
Jako ciekawostkę dodam, że we wcześniejszych, międzynarodowych badaniach prowadzonych w ramach projektu AUTISM MOLGEN dowiedziono, że osoby z autyzmem (w porównaniu do grupy kontrolnej) mają średnio o 19% więcej CNV, które zakłócają funkcjonowanie genów

Źródła:
A Higher Mutational Burden in Females Supports a “Female Protective Model” in Neurodevelopmental Disorders.”
The American Journal of Human Genetics, 27 lutego 2014 r.
tutaj
ScienceDaily, 27 lutego 2014 r.

czwartek, 13 lutego 2014

Zaburzenia mitochondrialne związane z autyzmem

Na stronie MitoAction Alyssa Davi prezentuje przegląd badań prowadzonych w laboratorium dra Richarda Frye`a w Arkansas Children’s Hospital Research Institute.

Dzieci z ASD i zaburzeniem funkcjonowania mitochondriów prezentują regres rozwojowy, opóźnienie umiejętności motorycznych, męczliwość, zaburzenia żołądkowo-jelitowe i ataksję. Istnieje coraz więcej danych dokumentujących zaburzenia metaboliczne u dzieci z autyzmem. Dysfunkcje mitochondriów i zaburzenie funkcjonowania mitochondriów (przypuszczalnie o wiele rzadziej) oraz braki kwasu foliowego, na które mózg jest wrażliwy, wydają się być obecnie najbardziej powszechnymi zaburzeniami metabolicznymi występującymi u dzieci z ASD.
Mitochondria mogą modyfikować swoją funkcję w zależności od środowiska wewnątrzkomórkowego i zewnątrzkomórkowego. Specyficzne warunki mogą hamować ich funkcjonowanie u niektórych dzieci z autyzmem. Zmiana tego środowiska może teoretycznie przywrócić zaburzone funkcje mitochondrialne. Ponadto mitochondria są zdolne do naprawy i regeneracji. W przypadku braku defektów genetycznych prawdopodobnie prawidłowe działanie mitochondriów może być przywrócone przez te mechanizmy naprawcze. L-karnityna, koenzym Q, witaminy z grupy B , witamina C i witamina E, jak również przeciwutleniacze, mogą wspierać funkcjonowanie mitochondriów. Zmiany w funkcjonowaniu mitochondriów w grupie dzieci z ASD są powodowane kombinacją czynników genetycznych i środowiskowych. Nabyte zaburzenia czynności mitochondriów mogą wynikać z ekspozycji na metale ciężkie, spaliny, polichlorowane bifenyle (PCB) i pestycydy. Mitochondria mogą być uszkodzone przez endogenne czynniki wiązane z autyzmem takie jak: podwyższony poziom cytokin prozapalnych wynikający z uaktywnionego układu odpornościowego lub inne stany związane ze stresem oksydacyjnym.
W artykule jest mnóstwo odnośników do omawianych w artykule oraz innych badań, m. in. dotyczących leczenia dysfunkcji mitochondriów związanych z autyzmem, chorób i zaburzeń metabolicznych związanych z ASD oraz zaburzeniami rozwoju układu nerwowego. Ponadto jest wymieniony, w formie listy, szereg zaburzeń mitochondrialnych oraz metabolicznych występujących u osób z autyzmem.

Źródła:
„January 2014 Teleconference”
MitoAction, 14 stycznia 2014 r.
Publications by Dr. Rossignol & Colleagues

czwartek, 19 września 2013

Alergia, mastocyty, zmiany w mózgu i autyzm

Theoharis C. Theoharides (Tufts University School of Medicine, Boston) sprawdzał, poprzez analizę publikacji naukowych, czy dane kliniczne sugerują związek pomiędzy objawami atopowymi i ASD. Poza tym czy może to prowadzić do zaburzeń w mózgu wyjaśniających patogenezę autyzmu.

Aktywacja komórek tucznych (mastocytów) w mózgu przez czynniki alergiczne, środowiskowe, toksyczne, immunologiczne, neurohormonalne oraz związane ze stresem może prowadzić do alergii ogniskowych zlokalizowanych w CUN. Sytuacja taka jest bardziej prawdopodobna w podgrupie pacjentów z ASD z podatnymi genami, które mają związek z aktywacją komórek tucznych.

Komórki tuczne – składniki układu immunologicznego, wywołujące głównie lokalny stan zapalny (np. alergię) w reakcji na obce substancje.

Mastocyty w mózgu, aktywowane przez w/w czynniki wydzielają duże ilości substancji, które mogą powodować alergię w kluczowych jego rejonach. Może ona nawet przekształcić się w lokalny stan zapalny.
Pomocne w diagnozowaniu tego stanu rzeczy i następnie zapobieganiu aktywacji komórek tucznych może być badanie osocza/płynu mózgowo-rdzeniowego (CSF) lub/i poziomu adenozynotrójfosforanu (ATP), który jest wytwarzany w macierzy mitochondrialnej. Stwierdzono, że w surowicy dzieci z autyzmem wzrasta poziom mitochondrialnego DNA, jak i ATP. Powoduje to silną odpowiedź przeciwzapalną.
Niestety, nie ma leków , które mogłyby blokować wydzielanie komórek tucznych. Kromoglikan dwusodowy działał skutecznie u szczurów, lecz nie było podobnych efektów, jeśli chodzi o komórki ludzkie. Być może luteolina (przeciwutleniacz, występujący gównie w selerze, zielonej papryce, marchwi), która hamuje aktywację mikrogleju (i jest lepiej tolerowana, niż niesteroidowe leki przeciwzapalne) może być alternatywą.
O rtęci jako jednym z toksycznych czynników środowiskowych, który powoduje aktywację mastocytów i bardziej szczegółowo o samym procesie aktywacji (degranulacji) pisałem we wrześniu 2010 r.

Dziękuję Pani dr Magdalenie Cubale-Kucharskiej za informację o badaniach i inspirację do tego wpisu.

Źródło:
Clinical Therapeutics, vol. 35 (5), maj 2013

piątek, 6 września 2013

Autyzm a zespoły genetyczne

W najnowszym numerze półrocznika „Autyzm” ukazał się artykuł Jolanty Wierzby pod powyższym tytułem. Poniżej przedstawiam najważniejsze informacje z tej pracy.

W wielu zespołach uwarunkowanych genetycznie pacjenci, poza charakterystyczną dysmorfią i niepełnosprawnością intelektualną, demonstrują również zachowania określone jako autystyczne.

Zespół Downa
Ok. 10-15% osób prezentuje takie zachowania. Zwykle ten profil zachowań ujawnia się dopiero gdy dziecko jest starsze. Problemy związane są głównie z komunikowaniem się oraz relacjami interpersonalnymi.

Zespół delecji chromosomu 22q11.2
Aż 26-44% osób demonstruje zachowania autystyczne przejawiające się rytualizacją, stereotypiami, powtarzaniem czynności, deficytami komunikacji niewerbalnej oraz zainteresowaniem przedmiotami w ruchu.

Zespół Smith-Magenis
Nawet do 70% chorych prezentuje profil zachowań autystycznych.

Zespół Cornelii de Lange
W badaniach własnych autorki zachowania autystyczne demonstrowało 59% osób z tym schorzeniem. Tego typu zachowania obserwowali także inni (53-89% pacjentów). Najczęstszym przejawem była powtarzalność, wręcz rytualizm w wykonywanych czynnościach. Zachowania autystyczne stawały się bardziej widoczne z wiekiem.

Zespół Retta
Pełnoobjawowa postać dotyczy dziewczynek, które rozwijają się prawidłowo do 6-18 miesiąca życia. Po tym okresie stwierdza się zatrzymanie rozwoju, a nawet jego regres. Pojawiają się stereotypie, znaczne trudności motoryczne, utrata mowy.

Zespół łamliwego chromosomu X
Podstawowe problemy, poza dysmorfią i niepełnosprawnością intelektualną, to zaburzenia mowy, utrudniony kontakt wzrokowy, nadpobudliwość, zaburzenia koncentracji uwagi, zachowania agresywne i autoagresywne. U ok. 10% pacjentów obserwuje się zachowania autystyczne.

Aberracje chromosomu 15
Zachowania autystyczne demonstrują także częściej niż zwykle pacjenci np. z zespołem Willi-Pradera, zespołem Angelmana, czy też z duplikacjami wybranych fragmentów tego chromosomu.

Źródło:
Autyzm (półrocznik), nr 13/2013

piątek, 12 lipca 2013

Autoprzeciwciała u matek powiązane z autyzmem – nowe badania

We wcześniejszych badaniach Judy Van de Water z University of California w Davis opisała grupę autoprzeciwciał, które szczególnie często występują u matek dzieci z autyzmem.

Ta sama autorka zidentyfikowała obecnie, wraz ze swoim zespołem, z jakimi białkami, które biorą udział w rozwoju mózgu, związane są te przeciwciała. Po przejściu przez łożysko przeciwciała matki wpływają na białka w mózgu płodu i sytuacja taka może zwiększać ryzyko problemów rozwojowych, w niektórych przypadkach w postaci zaburzeń ze spektrum autyzmu. Białko STIP1 wpływa na tworzenie nowych neuronów, CRMP1 i CRMP2 w odpowiednim momencie hamują wzrost neuronów i przez to regulują ich długość, YBX1 uczestniczy w transkrypcji genów oraz w migracji neuronów podczas rozwoju mózgu płodu, LDH wiąże się z autyzmem, może ono odgrywać rolę w metabolizmie lub też w odpowiedzi organizmu na wirusy i toksyny.
W grupie badanej było 246 matek dzieci z autyzmem, 23 procent z nich miało przeciwciała, które rozpoznawały dwa lub więcej z tych białek, w porównaniu do 1 procent w grupie kontrolnej składającej się z 149 matek zdrowych dzieci.
Teraz zespół Van de Water, na podstawie uzyskanych wyników stara się opracować test, który mógłby przewidywać ryzyko pojawienia się autyzmu na podstawie badania poziomów przeciwciał matki.
Jednocześnie podobny zespół (również z UC Davis) opublikował pracę, w której pokazuje (w modelu zwierzęcym), że niektóre przeciwciała mają wpływ na rozwój mózgu płodu. Matkom - małpom w ciąży wstrzykiwano odpowiednio spreparowane przeciwciała od matek dzieci z autyzmem. Po odstawieniu od matki, młode rezusy nie były skuteczne w nawiązywaniu trwałych interakcji społecznych. Autorzy sugerują, że niewłaściwe zachowania społeczne obserwowane w modelu zwierzęcym przypominają podtyp „aktywne-ale-dziwne” stylu społecznej interakcji w autyzmie.
Kolejne etapy badań mogą dotyczyć tego, w jaki sposób przeciwciała wpływają na rozwój mózgu płodu i jakie czynniki prowadzą do powstawania tych przeciwciał u niektórych kobiet. Ponadto ważnym celem jest sprawdzenie, w jaki sposób wyniki badań mogą być wykorzystane do przewidywania ryzyka autyzmu. I wreszcie można pokusić się o opracowanie strategii terapeutycznej, dzięki której być może będzie można blokować te przeciwciała.
O poprzednim badaniu Judy Van de Water i jej zespołu, dotyczącym genu MET, zaburzeń immunologicznych oraz obecności przeciwciał przeciwko białkom mózgu płodu we krwi matek, pisałem w listopadzie 2011 r.

Źródła:
Science, 09 lipca 2013 r.
Translational Psychiatry, 09 lipca 2013 r. (on-line)
Translational Psychiatry, 09 lipca 2013 r. - badania na małpach (on-line)

poniedziałek, 6 maja 2013

Agenezja ciała modzelowatego i autyzm – mapowanie mózgu

Grupa badaczy z University of California (San Francisco i Berkeley) próbowała odwzorować w modelu trójwymiarowym, połączenia w obrębie mózgu u siedmiu dorosłych osób, które przez wady genetyczne, nie posiadają ciała modzelowatego, łączącego obydwie półkule. Zastosowano badania MRI oraz narzędzie matematyczne – analizę sieci.

Agenezja ciała modzelowatego – niedorozwój ciała modzelowatego (spoidła wielkiego mózgu) o możliwej, dużej różnorodności (od częściowego po całkowity brak).

W poście z 24 kwietnia 2013 r. pisałem o badaniach genetycznych myszy z autystycznego szczepu BTBR. One również posiadały agenezję ciała modzelowatego.
Niektórzy ludzie, którzy rodzą się z agenezją, nie mają widocznych objawów choroby neurologicznej i przejawiają prawidłowy poziom rozwoju umysłowego. Jednak około 40 procent osób z tą wadą wrodzoną jest bardziej narażone na autyzm.
Porównano mózgi siedmiu osób z agenezją do jedenastu zdrowych. Wiązki w zakręcie obręczy były mniejsze i neurony wchodzące w ich skład miały mniej połączeń z innymi neuronami w pozostałych obszarach mózgu. Ponadto topologia połączeń mózgowych u osób z agenezją była bardziej zmienna.
Zrozumienie, jak odmienne są połączenia w mózgach różnych osób predysponowanych do wystąpienia autyzmu, może pomóc w zidentyfikowaniu biomarkerów związanych z obrazowaniem, które były by pomocne w diagnozowaniu autyzmu.

Źródła:
NeuroImage, vol. 70, 15 kwietnia 2013 r.
ScienceDaily, 28 lutego 2013 r.
tutaj

poniedziałek, 29 kwietnia 2013

Badanie łożyska a ryzyko wystąpienia autyzmu – kolejne doniesienia

Wyniki ostatnich badań prowadzonych w University of California w Davis (MIND Institute) oraz Yale School of Medicine pokazują, że łożyska kobiet, których dzieci narażone są na wyższy poziom ryzyka wystąpienia autyzmu (w rodzinie jest już jedno lub więcej dzieci z ASD) znacznie różnią się tych z grupy kontrolnej. Przejawia się to histologicznie jako inkluzje trofoblastu (TIs).

Trofoblast – warstwa komórek zewnętrznych kosmówki (błony płodowej), która w strukturze łożyska jest odpowiedzialna za pobieranie od matki składników pokarmowych i tlenu oraz oddawanie produktów przemiany materii.
Zmiany w strukturze trofoblastu to efekt nieprawidłowego wzrostu komórek, co powoduje fałdowanie się jego warstw.

Dr Harvey J. Kliman (główny autor badania) powiedział, że z jego obserwacji liczne inkluzje często obserwuje się w problematycznych urodzeniach, zwykle występują wtedy zaburzenia genetyczne. Im więcej wtrąceń trofoblastu tym poważniejsze nieprawidłowości. Autor ten opublikował w 2006 r. wyniki badań, gdzie wykazywał zdecydowanie więcej (niż u dzieci zdrowych) inkluzji u 13 obserwowanych dzieci, u których stwierdzono później ASD.
Obecne badanie dotyczyło już 117 dzieci z grupy ryzyka i 100 z niskim ryzykiem autyzmu. Ponad dwie trzecie łożysk dzieci o niskim ryzyku nie miało żadnych wad, pozostałe nie miały więcej niż dwie. W 77 łożyskach z grupy wysokiego ryzyka stwierdzono występowanie inkluzji, 48 z nich miało ich dwie lub więcej, w tym u 16 zaobserwowano od 5 do 15 pofałdowań.
Badanie dotyczyło noworodków, więc naukowcy nie wiedzą jeszcze (co najmniej do przyszłego roku), jak wiele dzieci, których łożyska były badane, będą miały stwierdzony autyzm.
Jeśli okaże się, że dzieci z autyzmem miały więcej widocznych po urodzeniu fałd w łożysku, może to być wczesny wskaźnik lub biomarker w przypadku dzieci z wysokim ryzykiem ASD.

Źródła:
Biological Psychiatry, vol. 73 (10), 25 kwietnia 2013 r. (on-line)
New York Times, 25 kwietnia 2013 r.